Do you want to publish a course? Click here

Asymptotic Entropy of Random Walks on Regular Languages over a Finite Alphabet

148   0   0.0 ( 0 )
 Added by Lorenz Gilch
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We prove existence of asymptotic entropy of random walks on regular languages over a finite alphabet and we give formulas for it. Furthermore, we show that the entropy varies real-analytically in terms of probability measures of constant support, which describe the random walk. This setting applies, in particular, to random walks on virtually free groups.



rate research

Read More

193 - Lorenz A. Gilch 2008
We consider random walks on the set of all words over a finite alphabet such that in each step only the last two letters of the current word may be modified and only one letter may be adjoined or deleted. We assume that the transition probabilities depend only on the last two letters of the current word. Furthermore, we consider also the special case of random walks on free products by amalgamation of finite groups which arise in a natural way from random walks on the single factors. The aim of this paper is to compute several equivalent formulas for the rate of escape with respect to natural length functions for these random walks using different techniques.
In this article we prove existence of the asymptotic entropy for isotropic random walks on regular Fuchsian buildings. Moreover, we give formulae for the asymptotic entropy, and prove that it is equal to the rate of escape of the random walk with respect to the Green distance. When the building arises from a Fuchsian Kac-Moody group our results imply results for random walks induced by bi-invariant measures on these groups, however our results are proven in the general setting without the assumption of any group acting on the building. The main idea is to consider the retraction of the isotropic random walk onto an apartment of the building, to prove existence of the asymptotic entropy for this retracted walk, and to `lift this in order to deduce the existence of the entropy for the random walk on the building.
58 - Lorenz A. Gilch 2019
In this article we consider transient random walks on HNN extensions of finitely generated groups. We prove that the rate of escape w.r.t. some generalised word length exists. Moreover, a central limit theorem with respect to the generalised word length is derived. Finally, we show that the rate of escape, which can be regarded as a function in the finitely many parameters which describe the random walk, behaves as a real-analytic function in terms of probability measures of constant support.
70 - Tobias Fritz 2020
We study the asymptotic behaviour of random walks on topological abelian groups $G$. Our main result is a sufficient condition for one random walk to overtake another in the stochastic order induced by any suitably large positive cone $G_+ subseteq G$, assuming that both walks have Radon distributions and compactly supported steps. We explain in which sense our sufficient condition is very close to a necessary one. Our result is a direct application of a recently proven theorem of real algebra, namely a Positivstellensatz for preordered semirings. It is due to Aubrun and Nechita in the one-dimensional case, but new already for $R^n$ with $n > 1$. We use our result to derive a formula for the rate at which the probabilities of a random walk decay relative to those of another, again for walks on $G$ with compactly supported Radon steps. In the case where one walk is a constant, this formula specializes to a version of Cramers large deviation theorem.
We consider a non-homogeneous random walks system on $bbZ$ in which each active particle performs a nearest neighbor random walk and activates all inactive particles it encounters up to a total amount of $L$ jumps. We present necessary and sufficient conditions for the process to survive, which means that an infinite number of random walks become activated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا