Do you want to publish a course? Click here

Heavy quarkonium production in the Regge limit of QCD: from Tevatron to LHC

106   0   0.0 ( 0 )
 Added by Vladimir Saleev
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Heavy quarkonium production in the framework of the non-relativistic quantum chromodynamics and leading order of the parton Reggeization approach at the Tevatron and LHC is discussed. In this note, we compare our predictions for the bottomonium production at the LHC due to the color-singlet approximation of the non-relativistic quantum chromodynamics with CMS and LHCb data. It is found, that in the production of Upsilon(1S) states, the color-singlet mechanism is dominating, whereas to describe the data for the inclusive Upsilon(2S) and Upsilon(3S) production, the color- octet contributions should be taken into account.



rate research

Read More

We consider b-jet production in the quasi-multi-Regge-kinematics approach based on the hypothesis of the gluon and quark Reggeization in the t-channel exchanges at the high energy. The data on various spectra of b-jet production measured by the CDF and D0 Collaborations at the Tevatron Collider are described well and with no free parameters.
We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledge, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.
We demonstrate that in the back-to-back kinematics the production of four jets in the collision of two partons is suppressed in the leading log approximation of pQCD, compared to the hard processes involving the collision of four partons. We derive the basic equation for four-jet production in QCD in terms of the convolution of generalized two-parton distributions of colliding hadrons in the momentum space representation. Our derivation leads to geometrical approach in the impact parameter space close to that suggested within the parton model and used before to describe the four-jet production. We develop the independent parton approximation to the light-cone wave function of the proton. Comparison with the CDF and D0 data shows that the independent parton approximation to the light-cone wave function of the proton is insufficient to explain the data. We argue that the data indicate the presence of significant multiparton correlations in the light-cone wave functions of colliding protons.
Using the non-relativisitc reduction of Coulomb gauge QCD we compute spectrum of the low mass hybrid mesons containing a heavy quark-antiquark pair. The gluon degrees of freedom are treated in the mean field approximation calibrated to the gluelump spectrum. We discuss the role of the non-abelian nature of the QCD Coulomb interaction in the ordering of the spin-parity levels.
The near threshold photo or electroproduction of heavy vector quarkonium off the proton is studied in quantum chromodynamics. Similar to the high-energy limit, the production amplitude can be factorized in terms of gluonic Generalized Parton Distributions and the quarkonium distribution amplitude. At the threshold, the threshold kinematics has a large skewness parameter $xi$, leading to the dominance of the spin-2 contribution over higher-spin twist-2 operators. Thus threshold production data are useful to extract the gluonic gravitational form factors, allowing studying the gluonic contributions to the quantum anomalous energy, mass radius, spin and mechanical pressure in the proton. We use the recent GlueX data on the $J/psi$ photoproduction to illustrate the potential physics impact from the high-precision data from future JLab 12 GeV and EIC physics program.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا