Do you want to publish a course? Click here

Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis

155   0   0.0 ( 0 )
 Added by Claudia Lederer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The $^{63}$Ni($n, gamma$) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian Averaged Cross Sections were calculated for thermal energies from kT = 5 keV to 100 keV with uncertainties around 20%. Stellar model calculations for a 25 M$_odot$ star show that the new data have a significant effect on the $s$-process production of $^{63}$Cu, $^{64}$Ni, and $^{64}$Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.



rate research

Read More

209 - V. Fischer 2019
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements were averaged over thermal spectra and have significant disagreements, a differential measurement has been performed using a Time-Of-Flight neutron beam and a $sim$4$pi$ gamma spectrometer. A fit to the differential cross section from $0.015-0.15$,eV, assuming a $1/v$ energy dependence, yields $sigma^{2200} = 673 pm 26 text{ (stat.)} pm 59 text{ (sys.)}$,mb.
73 - M. Heine , S. Typel , M.-R. Wu 2016
With the R$^{3}$B-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of $^{18}$C at a projectile energy around 425~AMeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of $^{17}$C into the ground state of $^{18}$C. Those data have been used to constrain theoretical calculations for transitions populating excited states in $^{18}$C. This allowed to derive the astrophysical cross section $sigma^{*}_{mathrm{n}gamma}$ accounting for the thermal population of $^{17}$C target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures $T_{9}leq{}1$~GK. Network simulations with updated neutron-capture rates and hydrodynamics according to the neutrino-driven wind model as well as the neutron-star merger scenario reveal no pronounced influence of neutron capture of $^{17}$C on the production of second- and third-peak elements in contrast to earlier sensitivity studies.
50% of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as $^{60}$Fe with a half-life of $2.60times10^6$ yr. To reproduce this $gamma$-activity in the universe, the nucleosynthesis of $^{60}$Fe has to be understood reliably. A $^{60}$Fe sample produced at the Paul-Scherrer-Institut was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universitat Mainz. The thermal neutron capture cross section has been measured for the first time to $sigma_{text{th}}=0.226 (^{+0.044}_{-0.049})$ b. An upper limit of $sigma_{text{RI}} < 0.50$ b could be determined for the resonance integral. An extrapolation towards the astrophysicaly interesting energy regime between $kT$=10 keV and 100 keV illustrates that the s-wave part of the direct capture component can be neglected.
The synthesis of heavy, proton rich isotopes is a poorly understood astrophysical process. Thermonuclear (type Ia) supernova explosions are among the suggested sites and the abundance of some isotopes present in the early solar system may be used to test the models. 92Nb is such an isotope and one of the reactions playing a role in its synthesis is 91Zr(p,gamma)92Nb. As no experimental cross sections were available for this reaction so far, nucleosynthesis models had to solely rely on theoretical calculations. In the present work the cross section of 91Zr(p,gamma)92mNb has been measured at astrophysical energies by activation. The results excellently confirm the predictions of cross sections and reaction rates for 91Zr(p,gamma)92Nb, as used in astrophysical simulations.
The neutron-proton bremsstrahlung process $(np to npgamma)$ is known to be sensitive to meson exchange currents in the nucleon-nucleon interaction. The triply differential cross section for this reaction has been measured for the first time at the Los Alamos Neutron Science Center, using an intense, pulsed beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered neutrons were observed at six angles between 12$^circ$ and 32$^circ$, and the recoil protons were observed in coincidence at 12$^circ$, 20$^circ$, and 28$^circ$ on the opposite side of the beam. Measurement of the neutron and proton energies at known angles allows full kinematic reconstruction of each event. The data are compared with predictions of two theoretical calculations, based on relativistic soft-photon and non-relativistic potential models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا