Do you want to publish a course? Click here

The 7.1 hour X-ray-UV-NIR period of the gamma-ray classical Nova Monocerotis 2012

159   0   0.0 ( 0 )
 Added by Kim Page
 Publication date 2013
  fields Physics
and research's language is English
 Authors K.L. Page




Ask ChatGPT about the research

Nova Mon 2012 is the third gamma-ray transient identified with a thermonuclear runaway on a white dwarf, that is, a nova event. Swift monitoring has revealed the distinct evolution of the harder and super-soft X-ray spectral components, while Swift-UV and V and I-band photometry show a gradual decline with subtle changes of slope. During the super-soft emission phase, a coherent 7.1 hr modulation was found in the soft X-ray, UV, optical and near-IR data, varying in phase across all wavebands. Assuming this period to be orbital, the system has a near-main sequence secondary, with little appreciable stellar wind. This distinguishes it from the first GeV nova, V407 Cyg, where the gamma-rays were proposed to form through shock-accelerated particles as the ejecta interacted with the red giant wind. We favor a model in which the gamma-rays arise from the shock of the ejecta with material close to the white dwarf in the orbital plane. This suggests that classical novae may commonly be GeV sources. We ascribe the orbital modulation to a raised section of an accretion disk passing through the line of sight, periodically blocking and reflecting much of the emission. The disk must, therefore, have reformed by day 150 after outburst.



rate research

Read More

We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal emission at kT=0.64 keV with an X-ray band unabsorbed luminosity of 2.3x10^{34} erg s^{-1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2^{+0.3}_{-0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT=23^{+9}_{-5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
183 - S. N. Shore 2013
Nova Mon 2012 was the first classical nova to be detected as a high energy $gamma$-ray transient, by Fermi-LAT, before its optical discovery. We study a time sequence of high resolution optical echelle spectra (Nordic Optical Telescope) and contemporaneous NOT, STIS UV, and CHIRON echelle spectra (Nov 20/21/22). We use [O III] and H$beta$ line fluxs to constrain the properties of the ejecta. We derive the structure from the optical and UV line profiles and compare our measured line fluxes for with predictions using Cloudy with abundances from other ONe novae. Mon 2012 is confirmed as an ONe nova. We find E(B-V)=0.85$pm$0.05 and hydrogen column density $approx 5times 10^{21}$ cm$^{-2}$. The corrected continuum luminosity is nearly the same in the entire observed energy range as V1974 Cyg, V382 Mon, and Nova LMC 2000 at the same epoch after outburst. The distance, about 3.6 kpc, is quite similar to V1974 Cyg. The line profiles can be modeled using an axisymmetric bipolar geometry for the ejecta with various inclinations of the axis to the line of sight, 60 le i le 80 degrees, an opening angle of approx$70 deg, inner radius $Delta R/R(t)approx 0.4$ for permitted lines and less filled for forbidden lines. The filling factor $fapprox 0.1-0.3$ implying M(ejecta) $leq 6times 10^{-5}$M$_odot$. The ONe novae appear to comprise a single physical class with bipolar high mass ejecta, similarly enhanced abundances, and a common spectroscopic evolution within a narrow range of luminosities. The detected $gamma$-ray emission may be a generic phenomenon, common to all ONe novae, possibly to all classical novae, and connected with acceleration and emission processes within the ejecta (abstract severely truncated).
Shocks in gamma-ray emitting classical novae are expected to produce bright thermal and non-thermal X-rays. We test this prediction with simultaneous NuSTAR and Fermi/LAT observations of nova V906 Car, which exhibited the brightest GeV gamma-ray emission to date. The nova is detected in hard X-rays while it is still gamma-ray bright, but contrary to simple theoretical expectations, the detected 3.5-78 keV emission of V906 Car is much weaker than the simultaneously observed >100 MeV emission. No non-thermal X-ray emission is detected, and our deep limits imply that the gamma-rays are likely hadronic. After correcting for substantial absorption (N_H ~ 2 x 10^23 cm^-2), the thermal X-ray luminosity (from a 9 keV optically-thin plasma) is just ~2% of the gamma-ray luminosity. We consider possible explanations for the low thermal X-ray luminosity, including the X-rays being suppressed by corrugated, radiative shock fronts or the X-rays from the gamma-ray producing shock are hidden behind an even larger absorbing column (N_H >10^25 cm^-2). Adding XMM-Newton and Swift/XRT observations to our analysis, we find that the evolution of the intrinsic X-ray absorption requires the nova shell to be expelled 24 days after the outburst onset. The X-ray spectra show that the ejecta are enhanced in nitrogen and oxygen, and the nova occurred on the surface of a CO-type white dwarf. We see no indication of a distinct super-soft phase in the X-ray lightcurve, which, after considering the absorption effects, may point to a low mass of the white dwarf hosting the nova.
We report the Suzaku detection of a rapid flare-like X-ray flux amplification early in the development of the classical nova V2672 Ophiuchi. Two target-of-opportunity ~25 ks X-ray observations were made 12 and 22 days after the outburst. The flux amplification was found in the latter half of day 12. Time-sliced spectra are characterized by a growing supersoft excess with edge-like structures and a relatively stable optically-thin thermal component with Ka emission lines from highly ionized Si. The observed spectral evolution is consistent with a model that has a time development of circumstellar absorption, for which we obtain the decline rate of ~10-40 % in a time scale of 0.2 d on day 12. Such a rapid drop of absorption and short-term flux variability on day 12 suggest inhomogeneous ejecta with dense blobs/holes in the line of sight. Then on day 22 the fluxes of both supersoft and thin-thermal plasma components become significantly fainter. Based on the serendipitous results we discuss the nature of this source in the context of both short- and long-term X-ray behavior.
We conducted an X-ray spectroscopic study of the classical nova V2491 Cygni using our target-of-opportunity observation data with the Suzaku and XMM-Newton satellites as well as archived data with the Swift satellite. Medium-resolution (R~10-50) spectra were obtained using the X-ray CCD spectrometers at several post-nova epochs on days 9, 29, 40, 50, and 60-150 in addition to a pre-nova interval between days -322 and -100 all relative to the time when the classical nova was spotted. We found remarkable changes in the time series of the spectra: (a) In the pre-nova phase and on day 9, the 6.7 keV emission line from Fe XXV was significantly detected. (b) On day 29, no such emission line was found. (c) On day 40, the 6.7 keV emission line emerged again. (d) On days 50 and 60-150, three emission lines at 6.4, 6.7, and 7.0 keV respectively from quasi-neutral Fe, Fe XXV, and Fe XXVI were found. Statistically significant changes of the Fe K line intensities were confirmed between day 29 and 50. Based on these phenomena, we conclude that (1) the post-nova evolution can be divided into two different phases, (2) ejecta is responsible for the X-ray emission in the earlier phase, while rekindled accretion is for the later phase, and (3) the accretion process is considered to be reestablished as early as day 50 when the quasi-neutral Fe emission line emerged, which is a common signature of accretion from magnetic cataclysmic variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا