A theoretical study of the surface energy-loss function of freestanding Pb(111) thin films is presented, starting from the single monolayer case. The calculations are carried applying the linear response theory, with inclusion of the electron band structure by means of a first-principles pseudopotential approach using a supercell scheme. Quantum-size effects on the plasmon modes of the thinnest films are found in qualitative agreement with previous work based on the jellium model. For thicker films, results show a dispersionless mode at all thicknesses, in agreeement with electron energy-loss measurements. For sizeable values of the momentum, the raising of the surface plasmon with increasing thickness is retrieved.