Do you want to publish a course? Click here

Resolving the gap and AU-scale asymmetries in the pre-transitional disk of V1247 Orionis

207   0   0.0 ( 0 )
 Added by Stefan Kraus
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5 to 13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically-thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii >46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K, and L band, we detect asymmetries in the brightness distribution on scales of about 15-40 AU, i.e. within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.



rate research

Read More

The radial drift problem constitutes one of the most fundamental problems in planet formation theory, as it predicts particles to drift into the star before they are able to grow to planetesimal size. Dust-trapping vortices have been proposed as a possible solution to this problem, as they might be able to trap particles over millions of years, allowing them to grow beyond the radial drift barrier. Here, we present ALMA 0.04-resolution imaging of the pre-transitional disk of V1247 Orionis that reveals an asymmetric ring as well as a sharply-confined crescent structure, resembling morphologies seen in theoretical models of vortex formation. The asymmetric ring (at 0.17=54 au separation from the star) and the crescent (at 0.38=120 au) seem smoothly connected through a one-armed spiral arm structure that has been found previously in scattered light. We propose a physical scenario with a planet orbiting at $sim0.3$$approx$100 au, where the one-armed spiral arm detected in polarised light traces the accretion stream feeding the protoplanet. The dynamical influence of the planet clears the gap between the ring and the crescent and triggers two vortices that trap mm-sized particles, namely the crescent and the bright asymmetry seen in the ring. We conducted dedicated hydrodynamics simulations of a disk with an embedded planet, which results in similar spiral-arm morphologies as seen in our scattered light images. At the position of the spiral wake and the crescent we also observe $^{12}$CO (3-2) and H$^{12}$CO$^{+}$ (4-3) excess line emission, likely tracing the increased scale-height in these disk regions.
V1247 Orionis harbours a pre-transitional disc with a partially cleared gap. Earlier interferometric and polarimetric observations revealed strong asymmetries both in the gap region and in the outer disc. The presence of a companion was inferred to explain these asymmetric structures and the ongoing disc clearing. Using an extensive set of multi-wavelength and multi-epoch observations we aimed to identify the origin of the previously detected asymmetries. We have observed V1247 Ori at three epochs spanning $sim678$ days using sparse aperture masking interferometry with Keck/NIRC2 and VLT/NACO. In addition, we search for signs of accretion through VLT/SPHERE-ZIMPOL spectral differential imaging in H$alpha$ and R-band continuum. Our SMA sub-millimetre interferometry in 880 $mu$m continuum and in the CO(3-2) line allows us to constrain the orientation and direction of rotation of the outer disc. We find the L-band emission to be dominated by static features which trace forward-scattered dust emission from the inner edge of the outer disc located to the north-east. In H- and K-band, we see evidence for a companion candidate that moved systematically by 45$^{circ}$ within the first $sim$345 days. The separation of the companion candidate is not well constrained, but the observed position angle change is consistent with Keplerian motion of a body located on a 6 au orbit. From the SMA CO moment map, the location of the disc rim, and the detected orbital motion, we deduced the three-dimensional orientation of the disc. We see no indication of accretion in H$alpha$ and set upper limits for an accreting companion. The measured contrast of the companion candidate in H and K is consistent with an actively accreting protoplanet. Hence, we identify V1247 Ori as a unique laboratory for studying companion-disc interactions and disc clearing.
We present Keck Interferometer observations of the three prototypical FU Orionis stars, FU Ori, V1057 Cyg, and V1515 Cyg. With a spatial resolution of a few milli-arcseconds and a spectral resolution of 2000, our near-infrared observations spatially resolve gas and dust emission extending from stellocentric radii of ~0.05 AU to several AU. We fit these data with accretion disk models where each stellocentric radius of the disk is represented by a supergiant-type stellar emission spectrum at the disk temperature. A disk model is consistent with the data for FU Ori, although we require some local asymmetry in the disk. For V1057 Cyg the disk model does not fit our data well, especially compared to the fit quality achieved for FU Ori. We speculate that a disk wind may be contributing substantially to the observed near-IR emission in this source. The data for V1515 Cyg are noisier than the data obtained for the other two objects, and do not strongly constrain the validity of an accretion disk model.
We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of ~0.14-0.86 (54-330 au) from the central star. The polarized intensity (PI) image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.28 $pm$ 0.09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at $lesssim$46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.
The disk around AB Aur was imaged and resolved at 24.6,$mu$m using the Cooled Mid-Infrared Camera and Spectrometer on the 8.2m Subaru Telescope. The gaussian full-width at half-maximum of the source size is estimated to be 90 $pm$ 6 AU, indicating that the disk extends further out at 24.6,$mu$m than at shorter wavelengths. In order to interpret the extended 24.6,$mu$m image, we consider a disk with a reduced surface density within a boundary radius $R_c$, which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor $f_c$ for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6,$mu$m is achieved with $R_c$=88 AU and $f_c$=0.01. We suggest that the extended emission at 24.6,$mu$m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at $R_c$. Such reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا