Do you want to publish a course? Click here

On equilibration and coarsening in the quantum O(N) model at infinite $N$

324   0   0.0 ( 0 )
 Added by Anushya Chandran
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum O(N) model in the infinite $N$ limit is a paradigm for symmetry-breaking. Qualitatively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of $N$ in varying spatial dimensions ($d>1$). Here we investigate the physics of this model out of equilibrium, specifically its response to global quenches starting in the disordered phase. If the model were to exhibit equilibration, the late time state could be inferred from the finite temperature phase diagram. In the infinite $N$ limit, we show that not only does the model not lead to equilibration on account of an infinite number of conserved quantities, it also does emph{not} relax to a generalized Gibbs ensemble consistent with these conserved quantities. Nevertheless, we emph{still} find that the late time states following quenches bear strong signatures of the equilibrium phase diagram. Notably, we find that the model exhibits coarsening to a non-equilibrium critical state only in dimensions $d>2$, that is, if the equilibrium phase diagram contains an ordered phase at non-zero temperatures.



rate research

Read More

149 - Spyros Sotiriadis 2016
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems.
97 - Spyros Sotiriadis 2015
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known as Generalized Gibbs Ensemble (GGE), that is expected to describe the relaxation of integrable systems after a quantum quench. By analytically studying the quench dynamics in a prototypical one-dimensional critical model, the massless free bosonic field theory, we find evidence of a novel type of equilibration characterized by the preservation of an enormous amount of memory of the initial state that is accessible by local measurements. In particular, we show that the equilibration retains memory of non-Gaussian initial correlations, in contrast to the case of massive free evolution which erases all such memory. The GGE in its standard form, being a Gaussian ensemble, fails to predict correctly the equilibrium values of local observables, unless the initial state is Gaussian itself. Our findings show that the equilibration of a broad class of quenches whose evolution is described by Luttinger liquid theory with an initial state that is non-Gaussian in terms of the bosonic field, is not correctly captured by the corresponding bosonic GGE, raising doubts about the validity of the latter in general one-dimensional gapless integrable systems such as the Lieb-Liniger model. We also propose that the same experiment by which the GGE was recently observed [Langen et al., Science 348 (2015) 207-211] can also be used to observe its failure, simply by starting from a non-Gaussian initial state.
85 - Michael Kastner 2016
Long-range interacting many-body systems exhibit a number of peculiar and intriguing properties. One of those is the scaling of relaxation times with the number $N$ of particles in a system. In this paper I give a survey of results on long-range quantum spin models that illustrate this scaling behaviour, and provide indications for its common occurrence by making use of Lieb-Robinson bounds. I argue that these findings may help in understanding the extraordinarily short equilibration timescales predicted by typicality techniques.
296 - M.T. Batchelor 1998
The partition function of the O(n) loop model on the honeycomb lattice is mapped to that of the O(n) loop model on the 3-12 lattice. Both models share the same operator content and thus critical exponents. The critical points are related via a simple transformation of variables. When n=0 this gives the recently found exact value $mu = 1.711 041...$ for the connective constant of self-avoiding walks on the 3-12 lattice. The exact critical points are recovered for the Ising model on the 3-12 lattice and the dual asanoha lattice at n=1.
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has non-trivial correlations and is synchronized with the drive. The O(N) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا