No Arabic abstract
In the strong lensing regime non-parametric lens models struggle to achieve sufficient angular resolution for a meaningful derivation of the central cluster mass distribution. The problem lies mainly with cluster members which perturb lensed images and generate additional images, requiring high resolution modeling, even though we mainly wish to understand the relatively smooth cluster component. The required resolution is not achievable because the separation between lensed images is several times larger than the deflection angles by member galaxies, even for the deepest data. Here we bypass this limitation by incorporating a simple physical prior for member galaxies, using their observed positions and their luminosity scaled masses. This galaxy contribution is added to a relatively coarse Gaussian pixel grid for modeling the cluster mass distribution, extending our established WSLAP code (Diego et al. 2007). We test this new code with a simulation based on A1689, using the pixels belonging to multiply-lensed images and the observed member galaxies. Dealing with the cluster members this way leads to convergent solutions, without resorting to regularization, reproducing well the input cluster and substructures. We highlight the ability of this method to recover dark sub-components of the cluster, unrelated to member galaxies. Such anomalies can provide clues to the nature of invisible dark matter, but are hard to discover using parametrized models where substructures are defined by the visible data. With our increased resolution and stability we show, for the first time, that non-parametric models can be made sufficiently precise to locate multiply-lensed systems, thereby achieving fully self-consistent solutions without reliance on input systems from less objective means.
We impose the first strong-lensing constraints on a wide class of modified gravity models where an extra field that modifies gravity also couples to photons (either directly or indirectly through a coupling with baryons) and thus modifies lensing. We use the nonsingular isothermal ellipsoid (NIE) profile as an effective potential, which produces flat galactic rotation curves. If a concrete modified gravity model gives a flat rotation curve, then the parameter $Gamma$ that characterizes the lensing effect must take some definite value. We find that $Gamma = 1.24pm0.65$ at $1sigma$, consistent with general relativity ($Gamma = 1$). This constrains the parameter space in some recently proposed models.
We present a parametric strong lensing modeling of the galaxy cluster MS,0440.5+0204 (located at $z$ = 0.19). We have performed a strong lensing mass reconstruction of the cluster using three different models. The first model uses the image positions of four multiple imaged systems (providing 26 constraints). The second one combines strong lensing constraints with dynamical information (velocity dispersion) of the cluster. The third one uses the mass calculated from weak lensing as an additional constraint. Our three models reproduce equally well the image positions of the arcs, with a root-mean-square image equal to $approx$0.5$arcsec$. However, in the third model, the inclusion of the velocity dispersion and the weak-lensing mass allows us to obtain better constraints in the scale radius and the line-of-sight velocity dispersion of the mass profile. For this model, we obtain $r_s$ = 132$^{+30}_{-32}$ kpc, $sigma_s$ = 1203$^{+46}_{-47}$ km s$^{-1}$, M$_{200}$ = 3.1$^{+0.6}_{-0.6}$ $times10^{14}$,M$_{odot}$, and a high concentration, $c_{200}$ = 9.9$^{+2.2}_{-1.4}$. Finally, we used our derived mass profile to calculate the mass up to 1.5 Mpc. We compare it with X-ray estimates previously reported, finding a good agreement.
Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile as inferred from the statistics of ellipticity of background galaxies allows to probe the cluster intermediate and outer regions thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, i.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal - to - noise (S/N) ratio also varying the cluster mass, redshift, and ellipticity. It turns out that the error on the cluster mass may be reduced up to a factor 2 for reasonable values of the flexion S/N ratio. As a general result, we get that the improvement in mass accuracy is larger for more flattened haloes, but extracting general trends is a difficult because of the many parameters at play. We nevertheless find that flexion is as efficient as magnification to increase the accuracy in both mass and concentration determination.
In this article we study the well-known strong lensing system SDSS J1004+4112. Not only does it host a large-separation lensed quasar with measured time-delay information, but several other lensed galaxies have been identified as well. A previously developed strong lens inversion procedure that is designed to handle a wide variety of constraints, is applied to this lensing system and compared to results reported in other works. Without the inclusion of a tentative central image of one of the galaxies as a constraint, we find that the model recovered by the other constraints indeed predicts an image at that location. An inversion which includes the central image provides tighter constraints on the shape of the central part of the mass map. The resulting model also predicts a central image of a second galaxy where indeed an object is visible in the available ACS images. We find masses of 2.5x10^13 M_O and 6.1x10^13 M_O within a radius of 60 kpc and 110 kpc respectively, confirming the results from other authors. The resulting mass map is compatible with an elliptical generalization of a projected NFW profile, with r_s = 58_{-13}^{+21} arcsec and c_vir = 3.91 +/- 0.74. The orientation of the elliptical NFW profile follows closely the orientation of the central cluster galaxy and the overall distribution of cluster members.
We seek to derive star formation rates (SFR) and stellar masses (M_star) in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrations or through a fitting process, as well as the impact of the available data, focusing on the role of IR emission originating from dust. We build a sample of galaxies with z>1, all observed from the UV to the IR (rest frame). The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different SFHs are introduced. We define different set of data, with or without a good sampling of the UV range, NIR, and thermal IR data. The impact of these different cases on the determination of M_star and SFR are analysed. Exponentially decreasing models with a redshift formation of the stellar population z ~8 cannot fit the data correctly. The other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter. The best fits are obtained with two stellar populations. As long as one measurement of the dust emission continuum is available, SFR are robustly estimated whatever the chosen model is, including standard recipes. M_star measurement is more subject to uncertainty, depending on the chosen model and the presence of NIR data, with an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from dust emission are missing, the uncertainty on SFR measurements largely exceeds that of stellar mass. Among all physical properties investigated here, the stellar ages are found to be the most difficult to constrain and this uncertainty acts as a second parameter in SFR measurements and as the most important parameter for M_star measurements.