The Haldane Insulator is a gapped phase characterized by an exotic non-local order parameter. The parameter regimes at which it might exist, and how it competes with alternate types of order, such as supersolid order, are still incompletely understood. Using the Stochastic Green Function (SGF) quantum Monte Carlo (QMC) and the Density Matrix Renormalization Group (DMRG), we study numerically the ground state phase diagram of the one-dimensional bosonic Hubbard model (BHM) with contact and near neighbor repulsive interactions. We show that, depending on the ratio of the near neighbor to contact interactions, this model exhibits charge density waves (CDW), superfluid (SF), supersolid (SS) and the recently identified Haldane insulating (HI) phases. We show that the HI exists only at the tip of the unit filling CDW lobe and that there is a stable SS phase over a very wide range of parameters.