Do you want to publish a course? Click here

Sequential quantum-enhanced measurement with an atomic ensemble

232   0   0.0 ( 0 )
 Added by Andrei V. Lebedev
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a quantum-enhanced iterative (with $K$ steps) measurement scheme based on an ensemble of $N$ two-level probes which asymptotically approaches the Heisenberg limit $delta_K propto R^{-K/(K+1)}$, $R$ the number of quantum resources. The protocol is inspired by Kitaevs phase estimation algorithm and involves only collective manipulation and measurement of the ensemble. The iterative procedure takes the shot-noise limited primary measurement with precision $delta_1propto N^{-1/2}$ to increasingly precise results $delta_Kpropto N^{-K/2}$. A straightforward implementation of the algorithm makes use of a two-component atomic cloud of Bosons in the precision measurement of a magnetic field.



rate research

Read More

We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a non-resonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states, and that the atomic nonlinearity gives rise to highly non-trivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.
We consider a quantum theory of elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate (BEC) phase. The dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Greens function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a non-degenerate atomic sample of the same density and size.
We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation for the quasi-probability distribution of the combined condensate-cavity system. We unravel the dynamics into stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously monitored system, and that these trajectories faithfully represent measurement records of individual experimental runs. Since the dynamics of a continuously measured observable in a many-atom system can be closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach to calculate the measurement record of a large multimode quantum system. Numerical simulations of the continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence. Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate and can be tailored to selectively excite collective modes.
We investigate the prospect of enhancing the phase sensitivity of atom interferometers in the Mach-Zehnder configuration with squeezed light. Ultimately, this enhancement is achieved by transferring the quantum state of squeezed light to one or more of the atomic input beams, thereby allowing operation below the standard quantum limit. We analyze in detail three specific schemes that utilize (1) single-mode squeezed optical vacuum (i.e. low frequency squeezing), (2) two-mode squeezed optical vacuum (i.e. high frequency squeezing) transferred to both atomic inputs, and (3) two-mode squeezed optical vacuum transferred to a single atomic input. Crucially, our analysis considers incomplete quantum state transfer (QST) between the optical and atomic modes, and the effects of depleting the initially-prepared atomic source. Unsurprisingly, incomplete QST degrades the sensitivity in all three schemes. We show that by measuring the transmitted photons and using information recycling [Phys. Rev. Lett. 110, 053002 (2013)], the degrading effects of incomplete QST on the sensitivity can be substantially reduced. In particular, information recycling allows scheme (2) to operate at the Heisenberg limit irrespective of the QST efficiency, even when depletion is significant. Although we concentrate on Bose-condensed atomic systems, our scheme is equally applicable to ultracold thermal vapors.
We study how the radiative properties of a dense ensemble of atoms can be modified when they are placed near or between metallic or dielectric surfaces. If the average separation between the atoms is comparable or smaller than the wavelength of the scattered photons, the coupling to the radiation field induces long-range coherent interactions based on the interatomic exchange of virtual photons. Moreover, the incoherent scattering of photons back to the electromagnetic field is known to be a many-body process, characterized by the appearance of superradiant and subradiant emission modes. By changing the radiation field properties, in this case by considering a layered medium where the atoms are near metallic or dielectric surfaces, these scattering properties can be dramatically modified. We perform a detailed study of these effects, with focus on experimentally relevant parameter regimes. We finish with a specific application in the context of quantum information storage, where the presence of a nearby surface is shown to increase the storage time of an atomic excitation that is transported across a one-dimensional chain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا