On Double 3-Term Arithmetic Progressions


Abstract in English

In this note we are interested in the problem of whether or not every increasing sequence of positive integers $x_1x_2x_3...$ with bounded gaps must contain a double 3-term arithmetic progression, i.e., three terms $x_i$, $x_j$, and $x_k$ such that $i + k = 2j$ and $x_i + x_k = 2x_j$. We consider a few variations of the problem, discuss some related properties of double arithmetic progressions, and present several results obtained by using RamseyScript, a high-level scripting language.

Download