Do you want to publish a course? Click here

Three years of Fermi GBM Earth Occultation Monitoring: Observations of Hard X-ray/Soft Gamma-Ray Sources

113   0   0.0 ( 0 )
 Added by Peter Jenke
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Gamma ray Burst Monitor (GBM) on board Fermi Gamma-ray Space Telescope has been providing continuous data to the astronomical community since 2008 August 12. We will present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. Although the occultation technique is in principle quite simple, in practice there are many complications including the dynamic instrument response, source confusion, and scattering in the Earths atmosphere, which will be described. We detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, 2 other sources, plus the Crab Nebula and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black-hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky monitors below 100 keV and is the only all-sky monitor above 100 keV. In our fourth year of monitoring, we have already increased the number of transient sources detected and expect several of the weaker persistent sources to cross the detection threshold. I will briefly discuss these new sources and what to expect from our five year occultation catalog.

rate research

Read More

The Earth Occultation Technique (EOT) has been applied to Fermis Gamma-ray Burst Monitor (GBM) to perform all-sky monitoring for a predetermined catalog of hard X-ray/soft gamma-ray sources. In order to search for sources not in the catalog, thus completing the catalog and reducing a source of systematic error in EOT, an imaging method has been developed -- Imaging with a Differential filter using the Earth Occultation Method (IDEOM). IDEOM is a tomographic imaging method that takes advantage of the orbital precession of the Fermi satellite. Using IDEOM, all-sky reconstructions have been generated for ~sim 4 years of GBM data in the 12-50 keV, 50-100 keV and 100-300 keV energy bands in search of sources otherwise unmodeled by the GBM occultation analysis. IDEOM analysis resulted in the detection of 57 sources in the 12-50 keV energy band, 23 sources in the 50-100 keV energy band, and 7 sources in the 100-300 keV energy band. Seventeen sources were not present in the original GBM-EOT catalog and have now been added. We also present the first joined averaged spectra for four persistent sources detected by GBM using EOT and by the Large Area Telescope (LAT) on Fermi: NGC 1275, 3C 273, Cen A, and the Crab.
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog enters or exits occultation by the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermis solar panels. We will present early results. Regularly updated results can be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation
We describe a long-term Swift monitoring program of Fermi gamma-ray sources, particularly the 23 gamma-ray sources of interest. We present a systematic analysis of the Swift X-ray Telescope light curves and hardness ratios of these sources, and we calculate excess variability. We present data for the time interval of 2004 December 22 through 2012 August 31. We describe the analysis methods used to produce these data products, and we discuss the availability of these data in an online repository, which continues to grow from more data on these sources and from a growing list of additional sources. This database should be of use to the broad astronomical community for long term studies of the variability of these objects and for inclusion in multi-wavelength studies.
We present the systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first ten years of operation. This catalog contains two types of spectra; time-integrated spectral fits and spectral fits at the brightest time bin, from 2297 GRBs, resulting in a compendium of over 18000 spectra. The four different spectral models used for fitting the spectra were selected based on their empirical importance to the shape of many GRBs. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions both in the observer frame and in the GRB rest frame. 941 GRBs from the first four years have been re-fitted using the same methodology as that of the 1356 GRBs in years five through ten. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
Employing the 12 NaI detectors in the Fermi GBM, the Earth Occultation Technique (EOT) can be used to measure the fluxes of x-ray and gamma-ray sources. Each time a source passes behind the Earth (or emerges from behind the Earth), a step-like feature is produced in the detector count rate. With a predefined catalog of source positions, the times of the occultation steps can be calculated, the individual steps fit, and the fluxes derived. However, in order to find new sources and generate a complete catalog, a method is needed for generating an image of the sky. An imaging algorithm has been developed to generate all-sky images using the GBM data. Here we present imaging results from ~2.5 years of data in the 12-25 keV and 100-300 keV energy bands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا