The electronic structure of a quantum spin liquid compound, EtMe3Sb[Pd(dmit)2]2, has been studied with angle-resolved photoemission spectroscopy, together with two other Pd(dmit)2 salts in the valence bond solid or antiferromagnetic state. We have resolved several bands that have negligible dispersions and fit well to the calculated energy levels of an isolated [Pd(dmit)2]2 dimer. EtMe3Sb[Pd(dmit)2]2 being a Mott insulator, its lower Hubbard band is identified, and there is a small gap of ~ 50 meV between this band and the chemical potential. Moreover, the spectral features exhibit polaronic behavior with anomalously broad linewidth. Compared with existing theories, our results suggest that strong electron-boson interactions, together with smaller hopping and on-site Coulomb interaction terms have to be considered for a realistic modeling of the organic quantum spin liquid systems like the Pd(dmit)2 salt.