No Arabic abstract
We propose an automated and unsupervised methodology for a novel summarization of group behavior based on content preference. We show that graph theoretical community evolution (based on similarity of user preference for content) is effective in indexing these dynamics. Combined with text analysis that targets automatically-identified representative content for each community, our method produces a novel multi-layered representation of evolving group behavior. We demonstrate this methodology in the context of political discourse on a social news site with data that spans more than four years and find coexisting political leanings over extended periods and a disruptive external event that lead to a significant reorganization of existing patterns. Finally, where there exists no ground truth, we propose a new evaluation approach by using entropy measures as evidence of coherence along the evolution path of these groups. This methodology is valuable to designers and managers of online forums in need of granular analytics of user activity, as well as to researchers in social and political sciences who wish to extend their inquiries to large-scale data available on the web.
Social media is currently one of the most important means of news communication. Since people are consuming a large fraction of their daily news through social media, most of the traditional news channels are using social media to catch the attention of users. Each news channel has its own strategies to attract more users. In this paper, we analyze how the news channels use sentiment to garner users attention in social media. We compare the sentiment of social media news posts of television, radio and print media, to show the differences in the ways these channels cover the news. We also analyze users reactions and opinion sentiment on news posts with different sentiments. We perform our experiments on a dataset extracted from Facebook Pages of five popular news channels. Our dataset contains 0.15 million news posts and 1.13 billion users reactions. The results of our experiments show that the sentiment of user opinion has a strong correlation with the sentiment of the news post and the type of information source. Our study also illustrates the differences among the social media news channels of different types of news sources.
Given a set of attributed subgraphs known to be from different classes, how can we discover their differences? There are many cases where collections of subgraphs may be contrasted against each other. For example, they may be assigned ground truth labels (spam/not-spam), or it may be desired to directly compare the biological networks of different species or compound networks of different chemicals. In this work we introduce the problem of characterizing the differences between attributed subgraphs that belong to different classes. We define this characterization problem as one of partitioning the attributes into as many groups as the number of classes, while maximizing the total attributed quality score of all the given subgraphs. We show that our attribute-to-class assignment problem is NP-hard and an optimal $(1 - 1/e)$-approximation algorithm exists. We also propose two different faster heuristics that are linear-time in the number of attributes and subgraphs. Unlike previous work where only attributes were taken into account for characterization, here we exploit both attributes and social ties (i.e. graph structure). Through extensive experiments, we compare our proposed algorithms, show findings that agree with human intuition on datasets from Amazon co-purchases, Congressional bill sponsorships, and DBLP co-authorships. We also show that our approach of characterizing subgraphs is better suited for sense-making than discriminating classification approaches.
Social groups play a crucial role in social media platforms because they form the basis for user participation and engagement. Groups are created explicitly by members of the community, but also form organically as members interact. Due to their importance, they have been studied widely (e.g., community detection, evolution, activity, etc.). One of the key questions for understanding how such groups evolve is whether there are different types of groups and how they differ. In Sociology, theories have been proposed to help explain how such groups form. In particular, the common identity and common bond theory states that people join groups based on identity (i.e., interest in the topics discussed) or bond attachment (i.e., social relationships). The theory has been applied qualitatively to small groups to classify them as either topical or social. We use the identity and bond theory to define a set of features to classify groups into those two categories. Using a dataset from Flickr, we extract user-defined groups and automatically-detected groups, obtained from a community detection algorithm. We discuss the process of manual labeling of groups into social or topical and present results of predicting the group label based on the defined features. We directly validate the predictions of the theory showing that the metrics are able to forecast the group type with high accuracy. In addition, we present a comparison between declared and detected groups along topicality and sociality dimensions.
Users online tend to consume information adhering to their system of beliefs and to ignore dissenting information. During the COVID-19 pandemic, users get exposed to a massive amount of information about a new topic having a high level of uncertainty. In this paper, we analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation concerning COVID-19. We compare the two platforms on about three million pieces of content analyzing user interaction with respect to news articles. We first describe users consumption patterns on the two platforms focusing on the political leaning of news outlets. Finally, we characterize the echo chamber effect by modeling the dynamics of users interaction networks. Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content, with a consequent affiliation towards reliable sources in terms of engagement and comments. Conversely, the lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior. Twitter users show segregation towards reliable content with a uniform narrative. Gab, instead, offers a more heterogeneous structure where users, independently of their leaning, follow people who are slightly polarized towards questionable news.
Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually dont live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesnt want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits.