Do you want to publish a course? Click here

Single pion production in neutrino nucleus scattering

481   0   0.0 ( 0 )
 Added by Juan Nieves Dr.
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results are incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.



rate research

Read More

Some of the recent progress in the physics of pion production induced by neutrinos on nucleons and nuclei is reviewed from a theoretical perspective. The importance of Watsons theorem to reconcile ANL and BNL data with the off-diagonal Goldberger-Treiman relation for the $Delta(1232)$ is discussed. The disagreement between MiniBooNE data and theoretical calculations is presented in the light of the new MINERvA data. The coherent pion production data on $^{12}$C obtained by MINERvA are also compared to different microscopic and PCAC models.
In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutrino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data
We compare our pion production results with recent MiniBooNE data measured in mineral oil. Our total cross sections lie below experimental data for neutrino energies above 1 GeV. Differential cross sections show our model produces too few high energy pions in the forward direction as compared to data. The agreement with experiment improves by artificially removing pion final state interaction.
The treatment of nuclear effects in neutrino-nucleus interactions is one of the main sources of systematic uncertainty for the analysis and interpretation of data of neutrino oscillation experiments. Neutrinos interact with nuclei via charged or neutral currents and both cases must be studied to obtain a complete information. We give an overview of the theoretical work that has been done to describe nuclear effects in neutral-current neutrin onucleus scattering in the kinematic region ranging between beam energies of a few hundreds MeV to a few GeV, which is typical of most ongoing and future accelerator-based neutrino experiments, and where quasielastic scattering is the main interaction mechanism. We review the current status and challenges of the theoretical models, the role and relevance of the contributions of different nuclear effects, and the present status of the comparison between the numerical predictions of the models as well as the available experimental data. We discuss also the sensitivity to the strange form factors of the nucleon and the methods and observables that can allow one to obtain evidence for a possible strange quark contribution from measurements of neutrino and antineutrino-nucleus scattering.
292 - S. X. Nakamura 2009
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to neutrino oscillation experiments of current interest. Our approach is based on a combined use of the Sato-Lee model of electroweak pion production on a nucleon and the Delta-hole model of pion-nucleus reactions. Thus we develop a model which describes pion-nucleus scattering and electroweak coherent pion production in a unified manner. Numerical calculations are carried out for the case of the 12C target. All the free parameters in our model are fixed by fitting to both total and elastic differential cross sections for pi-12C scattering. Then we demonstrate the reliability of our approach by confronting our prediction for the coherent pion photo-productions with data. Finally, we calculate total and differential cross sections for neutrino-induced coherent pion production, and some of the results are (will be) compared with the recent (forthcoming) data from K2K, SciBooNE and MiniBooNE. We also study effect of the non-locality of the Delta-propagation in the nucleus, and compare the elementary amplitudes used in different microscopic calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا