Do you want to publish a course? Click here

L-band AGPM vector vortex coronagraphs first light on VLT/NACO: Discovery of a late-type companion at two beamwidths from an F0V star

271   0   0.0 ( 0 )
 Added by Dimitri Mawet
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. High contrast imaging has thoroughly combed through the limited search space accessible with first-generation ground-based adaptive optics instruments and the Hubble Space Telescope. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. Aim. Our aim is to open a new search space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L band. The L band is a sweet spot for high contrast coronagraphy since the planet-to-star brightness ratio is favorable, while the Strehl ratio is naturally higher. Methods. An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L band, made from diamond subwavelength gratings was manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA, potentially being the key to unexplored discovery space. Results. Here we present the installation and successful on-sky tests of an L-band AGPM coronagraph on NACO. Using angular differential imaging, which is well suited to the rotational symmetry of the AGPM, we demonstrated a Delta L > 7.5 mag contrast from an IWA ~ 0.09 onwards, during average seeing conditions, and for total integration times of a few hundred seconds.



rate research

Read More

109 - D. Defr`ere , O. Absil , P. Hinz 2014
We present the first observations obtained with the L-band AGPM vortex coronagraph recently installed on LBTI/LMIRCam. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from diamond subwavelength gratings. It is designed to improve the sensitivity and dynamic range of high-resolution imaging at very small inner working angles, down to 0.09 arcseconds in the case of LBTI/LMIRCam in the L band. During the first hours on sky, we observed the young A5V star HR,8799 with the goal to demonstrate the AGPM performance and assess its relevance for the ongoing LBTI planet survey (LEECH). Preliminary analyses of the data reveal the four known planets clearly at high SNR and provide unprecedented sensitivity limits in the inner planetary system (down to the diffraction limit of 0.09 arcseconds).
161 - Sasha Hinkley 2010
Through the combination of high-order Adaptive Optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168+/-.016 solar masses, giving a mass ratio for this system q = 0.082. Assuming the two objects are coeval, this mass suggests a M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semi-major axis to be greater than 24.9 AU, the period > 124$ yrs, and eccentricity > 0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT.
Coronagraphy is a powerful technique to achieve high contrast imaging and hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared remain nowadays largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of ~16% (3.5-4.1 mu m). Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench. A broadband raw null depth of 2 x 10^{-3} was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 x 10^{-5} (10.5 mag) at 2lambda/D. This result is fully in line with our projections based on rigorous coupled wave analysis modeling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated. After years of technological developments, mid-infrared vector vortex coronagraphs finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories.
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L band (3.8 micron) during the commissioning of the vector vortex coronagraph recently installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point spread function subtraction, which reveals the innermost disk component from the inner working distance of $simeq 23$ AU and up to $simeq 70$ AU. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N and 8.6 micron PAH emission reported earlier. We also see an outward progression in dust location from the L-band to the H-band (VLT/SPHERE image) to the visible (HST/STIS image), likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST NICMOS in 1999 (respectively at 406 and 245 AU). We fit our new L-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains, and are consistent with the composition of the outer belts. While our image shows a putative very-faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
Radial velocity (RV) searches for exoplanets have surveyed many of the nearest and brightest stars for long-term velocity variations indicative of a companion body. Such surveys often detect high-amplitude velocity signatures of objects that lie outside the planetary mass regime, most commonly those of a low-mass star. Such stellar companions are frequently discarded as false-alarms to the main science goals of the survey, but high-resolution imaging techniques can be employed to either directly detect or place significant constraints on the nature of the companion object. Here, we present the discovery of a compact companion to the nearby star HD~118475. Our Anglo-Australian Telescope (AAT) RV data allow the extraction of the full Keplerian orbit of the companion, found to have a minimum mass of 0.445~$M_odot$. Follow-up speckle imaging observations at the predicted time of maximum angular separation rule out a main sequence star as the source of the RV signature at the 3.3$sigma$ significance level, implying that the companion must be a low-luminosity compact object, most likely a white dwarf. We provide an isochrone analysis combined with our data that constrain the possible inclinations of the binary orbit. We discuss the eccentric orbit of the companion in the context of tidal circularization timescales and show that non-circular orbit was likely inherited from the progenitor. Finally, we emphasize the need for utilizing such an observation method to further understand the demographics of white dwarf companions around nearby stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا