No Arabic abstract
The efficiency of extracting topological information from point data depends largely on the complex that is built on top of the data points. From a computational viewpoint, the most favored complexes for this purpose have so far been Vietoris-Rips and witness complexes. While the Vietoris-Rips complex is simple to compute and is a good vehicle for extracting topology of sampled spaces, its size is huge--particularly in high dimensions. The witness complex on the other hand enjoys a smaller size because of a subsampling, but fails to capture the topology in high dimensions unless imposed with extra structures. We investigate a complex called the {em graph induced complex} that, to some extent, enjoys the advantages of both. It works on a subsample but still retains the power of capturing the topology as the Vietoris-Rips complex. It only needs a graph connecting the original sample points from which it builds a complex on the subsample thus taming the size considerably. We show that, using the graph induced complex one can (i) infer the one dimensional homology of a manifold from a very lean subsample, (ii) reconstruct a surface in three dimension from a sparse subsample without computing Delaunay triangulations, (iii) infer the persistent homology groups of compact sets from a sufficiently dense sample. We provide experimental evidences in support of our theory.
Computation of persistent homology of simplicial representations such as the Rips and the Cv{e}ch complexes do not efficiently scale to large point clouds. It is, therefore, meaningful to devise approximate representations and evaluate the trade-off between their efficiency and effectiveness. The lazy witness complex economically defines such a representation using only a few selected points, called landmarks. Topological data analysis traditionally considers a point cloud in a Euclidean space. In many situations, however, data is available in the form of a weighted graph. A graph along with the geodesic distance defines a metric space. This metric space of a graph is amenable to topological data analysis. We discuss the computation of persistent homologies on a weighted graph. We present a lazy witness complex approach leveraging the notion of $epsilon$-net that we adapt to weighted graphs and their geodesic distance to select landmarks. We show that the value of the $epsilon$ parameter of the $epsilon$-net provides control on the trade-off between choice and number of landmarks and the quality of the approximate simplicial representation. We present three algorithms for constructing an $epsilon$-net of a graph. We comparatively and empirically evaluate the efficiency and effectiveness of the choice of landmarks that they induce for the topological data analysis of different real-world graphs.
Geometric graphs form an important family of hidden structures behind data. In this paper, we develop an efficient and robust algorithm to infer a graph skeleton behind a point cloud data (PCD)embedded in high dimensional space. Previously, there has been much work to recover a hidden graph from a low-dimensional density field, or from a relatively clean high-dimensional PCD (in the sense that the input points are within a small bounded distance to a true hidden graph). Our proposed approach builds upon the recent line of work on using a persistence-guided discrete Morse (DM) theory based approach to reconstruct a geometric graph from a density field defined over a triangulation of low-dimensional Euclidean domain. In particular, we first give a very simple generalization of this DM-based algorithm from a density-function perspective to a general filtration perspective. On the theoretical front, we show that the output of the generalized algorithm contains a so-called lexicographic-optimal persistent cycle basis w.r.t the input filtration, justifying that the output is indeed meaningful. On the algorithmic front, this generalization allows us to use the idea of sparsified weighted Rips filtration (developed by Buchet etal) to develop a new graph reconstruction algorithm for noisy point cloud data (PCD) (which do not need to be embedded). The new algorithm is robust to background noise and non-uniform distribution of input points. We provide various experimental results to show the efficiency and effectiveness of our new graph reconstruction algorithm for PCDs.
In this article, we show how the recent statistical techniques developed in Topological Data Analysis for the Mapper algorithm can be extended and leveraged to formally define and statistically quantify the presence of topological structures coming from biological phenomena in datasets of CCC contact maps.
We develop a method for analyzing spatiotemporal anomalies in geospatial data using topological data analysis (TDA). To do this, we use persistent homology (PH), a tool from TDA that allows one to algorithmically detect geometric voids in a data set and quantify the persistence of these voids. We construct an efficient filtered simplicial complex (FSC) such that the voids in our FSC are in one-to-one correspondence with the anomalies. Our approach goes beyond simply identifying anomalies; it also encodes information about the relationships between anomalies. We use vineyards, which one can interpret as time-varying persistence diagrams (an approach for visualizing PH), to track how the locations of the anomalies change over time. We conduct two case studies using spatially heterogeneous COVID-19 data. First, we examine vaccination rates in New York City by zip code. Second, we study a year-long data set of COVID-19 case rates in neighborhoods in the city of Los Angeles.
Given n data points in R^d, an appropriate edge-weighted graph connecting the data points finds application in solving clustering, classification, and regresssion problems. The graph proposed by Daitch, Kelner and Spielman (ICML~2009) can be computed by quadratic programming and hence in polynomial time. While a more efficient algorithm would be preferable, replacing quadratic programming is challenging even for the special case of points in one dimension. We develop a dynamic programming algorithm for this case that runs in O(n^2) time.