Do you want to publish a course? Click here

Catastrophic Consequences of Kicking the Chameleon

436   0   0.0 ( 0 )
 Added by Adrienne Erickcek
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The physics of the dark energy that drives the current cosmological acceleration remains mysterious, and the dark sector may involve new light dynamical fields. If these light scalars couple to matter, a screening mechanism must prevent them from mediating an unacceptably strong fifth force locally. Here we consider a concrete example: the chameleon mechanism. We show that the same coupling between the chameleon field and matter employed by the screening mechanism also has catastrophic consequences for the chameleon during the Universes first minutes. The chameleon couples to the trace of the stress-energy tensor, which is temporarily non-zero in a radiation-dominated universe whenever a particle species becomes non-relativistic. These kicks impart a significant velocity to the chameleon field, causing its effective mass to vary non-adiabatically and resulting in the copious production of quantum fluctuations. Dissipative effects strongly modify the background evolution of the chameleon field, invalidating all previous classical treatments of chameleon cosmology. Moreover, the resulting fluctuations have extremely high characteristic energies, which casts serious doubt on the validity of the effective theory. Our results demonstrate that quantum particle production can profoundly affect scalar-tensor gravity, a possibility not previously considered. Working in this new context, we also develop the theory and numerics of particle production in the regime of strong dissipation.



rate research

Read More

The concept of dominant interaction hamiltonians is introduced and applied to classical planar electron-atom scattering. Each trajectory is governed in different time intervals by two variants of a separable approximate hamiltonian. Switching between them results in exchange of energy between the two electrons. A second mechanism condenses the electron-electron interaction to instants in time and leads to an exchange of energy and angular momentum among the two electrons in form of kicks. We calculate the approximate and full classical deflection functions and show that the latter can be interpreted in terms of the switching sequences of the approximate one. Finally, we demonstrate that the quantum results agree better with the approximate classical dynamical results than with the full ones.
109 - L.A. Popa 2011
We consider the possibility to observationally differentiate the Standard Model (SM) Higgs driven inflation with non-minimal couplingto gravity from other variants of SM Higgs inflation based on the scalar field theories with non-canonical kinetic term such as Galileon-like kinetic term and kinetic term with non-minimal derivative coupling to the Einstein tensor. In order to ensure consistent results, we study the SM Higgs inflation variants by using the same method, computing the full dynamics of the background and perturbations of the Higgs field during inflation at quantum level. Assuming that all the SM Higgs inflation variants are consistent theories, we use the MCMC technique to derive constraints on the inflationnoary parameters and the Higgs boson mass from their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs mass measurement by the LHC and accurate determination by the PLANCK satellite of the spectral index of curvature perturbations and tensor-to-scalar ratio will enable to distinguish among these models. We also show that the consistency relations of the SM Higgs inflation variants are distinct enough to differentiate the models.
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle by up to a factor of $sim 3$, and that the least screened objects are those which minimize some internal dimension.
122 - Hemza Azri , A. Bounames 2014
We derive a model of dark energy which evolves with time via the scale factor. The equation of state $omega=(1-2alpha)/(1+2alpha)$ is studied as a function of a parameter $alpha$ introduced in this model. In addition to the recent accelerated expansion, the model predicts another decelerated phase. The age of the universe is found to be almost consistent with observation. In the limiting case, the cosmological constant model, we find that vacuum energy gravitates with a gravitational strength, different than Newtons constant. This enables degravitation of the vacuum energy which in turn produces the tiny observed curvature, rather than a 120 orders of magnitude larger value.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا