No Arabic abstract
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line $Re(s)=1/2$. Hilbert and Polya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Following this approach, we discuss a necessary condition that such a sequence of numbers should obey in order to be associated with the spectrum of a linear differential operator of a system with countably infinite number of degrees of freedom described by quantum field theory. The sequence of nontrivial zeros is zeta regularizable. Then, functional integrals associated with hypothetical systems described by self-adjoint operators whose spectra is given by this sequence can be constructed. However, if one considers the same situation with primes numbers, the associated functional integral cannot be constructed, due to the fact that the sequence of prime numbers is not zeta regularizable. Finally, we extend this result to sequences whose asymptotic distributions are not far away from the asymptotic distribution of prime numbers.
We present a remarkable connection between the asymptotic behavior of the Riemann zeros and one-loop effective action in Euclidean scalar field theory. We show that in a two-dimensional space, the asymptotic behavior of the Fourier transform of two-point correlation functions fits the asymptotic distribution of the non-trivial zeros of the Riemann zeta function. We work out an explicit example, namely the non-linear sigma model in the leading order in $1/N$ expansion.
Prime numbers are the building blocks of our arithmetic, however, their distribution still poses fundamental questions. Bernhard Riemann showed that the distribution of primes could be given explicitly if one knew the distribution of the non-trivial zeros of the Riemann $zeta(s)$ function. According to the Hilbert-P{o}lya conjecture there exists a Hermitean operator of which the eigenvalues coincide with the real part of the non-trivial zeros of $zeta(s)$. This idea encourages physicists to examine the properties of such possible operators, and they have found interesting connections between the distribution of zeros and the distribution of energy eigenvalues of quantum systems. We apply the Mar{v{c}}henko approach to construct potentials with energy eigenvalues equal to the prime numbers and to the zeros of the $zeta(s)$ function. We demonstrate the multifractal nature of these potentials by measuring the R{e}nyi dimension of their graphs. Our results offer hope for further analytical progress.
Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge invariant) vector potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article.
Recently we introduced a new technique for computing the average free energy of a system with quenched randomness. The basic tool of this technique is a distributional zeta-function. The distributional zeta-function is a complex function whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which can not be written as a series of the integer moments, can be made as small as desired. In this paper we present a mathematical rigorous proof that the average free energy of one disordered $lambdavarphi^{4}$ model defined in a zero-dimensional space can be obtained using the distributional zeta-function technique. We obtain an analytic expression for the average free energy of the model.
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the perturbative path integral for gauge theories in Batalin-Vilkovisky formalism and the associated mathematical concepts.