Do you want to publish a course? Click here

Cosmological Zoom Simulations of z = 2 Galaxies: The Impact of Galactic Outflows

503   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use high-resolution cosmological zoom simulations with ~200 pc resolution at z = 2 and various prescriptions for galactic outflows in order to explore the impact of winds on the morphological, dynamical, and structural properties of eight individual galaxies with halo masses ~ 10^11--2x10^12 Msun at z = 2. We present a detailed comparison to spatially and spectrally resolved H{alpha} and other observations of z ~ 2 galaxies. We find that simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kpc. Strong winds are required to maintain high gas fractions, redistribute star-forming gas over larger scales, and increase the velocity dispersion of simulated galaxies, more in agreement with the large, extended, turbulent disks typical of high-redshift star-forming galaxies. Winds also suppress early star formation to produce high-redshift cosmic star formation efficiencies in better agreement with observations. Sizes, rotation velocities, and velocity dispersions all scale with stellar mass in accord with observations. Our simulations produce a diversity of morphological characteristics - among our three most massive galaxies, we find a quiescent grand-design spiral, a very compact star-forming galaxy, and a clumpy disk undergoing a minor merger; the clumps are evident in H{alpha} but not in the stars. Rotation curves are generally slowly rising, particularly when calculated using azimuthal velocities rather than enclosed mass. Our results are broadly resolution-converged. These results show that cosmological simulations including outflows can produce disk galaxies similar to those observed during the peak epoch of cosmic galaxy growth.



rate research

Read More

We investigate the differential effects of metal cooling and galactic stellar winds on the cosmological formation of individual galaxies with three sets of cosmological, hydrodynamical zoom simulations of 45 halos in the mass range 10^11<M_halo<10^13M_sun. Models including both galactic winds and metal cooling (i) suppress early star formation at z>1 and predict reasonable star formation histories, (ii) produce galaxies with high cold gas fractions (30-60 per cent) at high redshift, (iii) significantly reduce the galaxy formation efficiencies for halos (M_halo<10^12M_sun) at all redshifts in agreement with observational and abundance matching constraints, (iv) result in high-redshift galaxies with reduced circular velocities matching the observed Tully-Fisher relation at z~2, and (v) significantly increase the sizes of low-mass galaxies (M_stellar<3x10^10M_sun) at high redshift resulting in a weak size evolution - a trend in agreement with observations. However, the low redshift (z<0.5) star formation rates of massive galaxies are higher than observed (up to ten times). No tested model predicts the observed size evolution for low-mass and high-mass galaxies simultaneously. Due to the delayed onset of star formation in the wind models, the metal enrichment of gas and stars is delayed and agrees well with observational constraints. Metal cooling and stellar winds are both found to increase the ratio of in situ formed to accreted stars - the relative importance of dissipative vs. dissipationless assembly. For halo masses below ~10^12M_sun, this is mainly caused by less stellar accretion and compares well to predictions from semi-analytical models but still differs from abundance matching models. For higher masses, the fraction of in situ stars is over-predicted due to the unrealistically high star formation rates at low redshifts.
In order to investigate the structure and dynamics of the recently discovered massive (M_* > 10^11 M_sun) compact z~2 galaxies, cosmological hydrodynamical/N-body simulations of a proto-cluster region have been undertaken. At z=2, the highest resolution simulation contains ~5800 resolved galaxies, of which 509, 27 and 5 have M_* > 10^10 M_sun, > 10^11 M_sun and > 4x10^11 M_sun, respectively. Effective radii and characteristic stellar densities have been determined for all galaxies. At z=2, for the definitely well resolved mass range of M_* > 10^11 Msun, the mass-size relation is consistent with observational findings for the most compact z~2 galaxies. The very high velocity dispersion recently measured for a compact z~2 galaxy (~510 km/s; van Dokkum et al 2009) can be matched at about the 1-sigma level, although a somewhat larger mass than the estimated M_* ~ 2 x 10^11 M_sun is indicated. For the above mass range, the galaxies have an average axial ratio <b/a> = 0.64 +/- 0.02 with a dispersion of 0.1, an average rotation to 1D velocity dispersion ratio <v/sigma> = 0.46 +/- 0.06 with a dispersion of 0.3, and a maximum value of v/sigma ~ 1.1. Rotation and velocity anisotropy both contribute in flattening the compact galaxies. Some of the observed compact galaxies appear flatter than any of the simulated galaxies. Finally, it is found that the massive compact galaxies are strongly baryon dominated in their inner parts, with typical dark matter mass fractions of order only 20% inside of r=2R_eff.
Studies of cluster mass and velocity anisotropy profiles are useful tests of dark matter models, and of the assembly history of clusters of galaxies. These studies might be affected by unknown systematics caused by projection effects. We aim at testing observational methods for the determination of mass and velocity anisotropy profiles of clusters of galaxies. Particularly, we focus on the MAMPOSSt technique (Mamon et al. 2013). We use results from two semi-analytic models of galaxy formation coupled with high-resolution N-body cosmological simulations, the catalog of De Lucia & Blaizot (2007) and the FIRE catalog based on the new GAlaxy Evolution and Assembly model. We test the reliability of the Jeans equation in recovering the true mass profile when full projected phase-space information is available. We examine the reliability of the MAMPOSSt method in estimating the true mass and velocity anisotropy profiles of the simulated halos when only projected phase-space information is available, as in observations. The spherical Jeans equation provides a reliable tool for the determination of cluster mass profiles, also for subsamples of tracers separated by galaxy color. Results are equally good for prolate and oblate clusters. Using only projected phase-space information, MAMPOSSt provides estimates of the mass profile with a standard deviation of 35-69 %, and a negative bias of 7-17 %, nearly independent of radius, and that we attribute to the presence of interlopers in the projected samples. The bias changes sign, that is, the mass is over-estimated, for prolate clusters with their major axis aligned along the line-of-sight. MAMPOSSt measures the velocity anisotropy profiles accurately in the inner cluster regions, with a slight overestimate in the outer regions, both for the whole sample of observationally-identified cluster members and separately for red and blue galaxies.
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems that match the observed number density of SMGs. In our models, SMGs are massive galaxies sitting at the centres of large potential wells, being fed by smooth infall and gas-rich satellites at rates comparable to their star formation rates (SFR). They are not typically undergoing major mergers that significantly boost their quiescent SFR, but they still often show complex gas morphologies and kinematics. Our simulated SMGs have stellar masses of log M*/Mo~11-11.7, SFRs of ~180-500 Mo/yr, a clustering length of 10 Mpc/h, and solar metallicities. The SFRs are lower than those inferred from far-IR data by a factor of 3, which we suggest may owe to one or more systematic effects in the SFR calibrations. SMGs at z=2 live in ~10^13 Mo halos, and by z=0 they mostly end up as brightest group galaxies in ~10^14 Mo halos. We predict that higher-M* SMGs should have on average lower specific SFRs, less disturbed morphologies, and higher clustering. We also predict that deeper far-IR surveys will smoothly join SMGs onto the massive end of the SFR-M* relationship defined by lower-mass z=2 galaxies. Overall, our simulated rapid star-formers provide as good a match to available SMG data as merger-based scenarios, offering an alternative scenario that emerges naturally from cosmological simulations.
133 - Dawn K. Erb 2012
We study large-scale outflows in a sample of 96 star-forming galaxies at 1<z<2, using near-UV spectroscopy of FeII and MgII absorption and emission. The average blueshift of the FeII interstellar absorption lines with respect to the systemic velocity is -85+/-10 km/s at z~1.5, with standard deviation 87 km/s; this is a decrease of a factor of two from the average blueshift measured for far-UV interstellar absorption lines in similarly selected galaxies at z~2. The profiles of the MgII 2796, 2803 lines show much more variety than the FeII profiles, which are always seen in absorption; MgII ranges from strong emission to pure absorption, with emission more common in galaxies with blue UV slopes and at lower stellar masses. Outflow velocities, as traced by the centroids and maximum extent of the absorption lines, increase with increasing stellar mass with 2-3sigma significance, in agreement with previous results. We study fine structure emission from FeII*, finding several lines of evidence in support of the model in which this emission is generated by the re-emission of continuum photons absorbed in the FeII resonance transitions in outflowing gas. In contrast, photoionization models indicate that MgII emission arises from the resonant scattering of photons produced in HII regions, accounting for the differing profiles of the MgII and FeII lines. A comparison of the strengths of the FeII absorption and FeII* emission lines indicates that massive galaxies have more extended outflows and/or greater extinction, while two-dimensional composite spectra indicate that emission from the outflow is stronger at a radius of ~10 kpc in high mass galaxies than in low mass galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا