Do you want to publish a course? Click here

HerMES: A Deficit in the Surface Brightness of the Cosmic Infrared Background Due to Galaxy Cluster Gravitational Lensing

266   0   0.0 ( 0 )
 Added by Michael Zemcov
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after subtracting sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I(250 microns) > 0.69_(-0.03)^(+0.03) (stat.)_(-0.06)^(+0.11) (sys.) MJy/sr, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.



rate research

Read More

We reconstruct the gravitational lensing convergence signal from Cosmic Microwave Background (CMB) polarization data taken by the POLARBEAR experiment and cross-correlate it with Cosmic Infrared Background (CIB) maps from the Herschel satellite. From the cross-spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0$sigma$ and evidence for the presence of a lensing $B$-mode signal at a significance of 2.3$sigma$. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null-tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
We quantify the fraction of the cosmic infrared background (CIB) that originates from galaxies identified in the UV/optical/near-infrared by stacking 81,250 (~35.7 arcmin^2) K-selected sources (K_AB < 24.0), split according to their rest-frame U - V vs. V - J colors into 72,216 star-forming and 9,034 quiescent galaxies, on maps from Spitzer/MIPS (24um), Herschel/SPIRE (250, 350, 500um), Herschel/PACS (100, 160um), and AzTEC (1100um). The fraction of the CIB resolved by our catalog is (69 $pm$ 15)% at 24um, (78 $pm$ 17)% at 70um, (58 $pm$ 13)% at 100um, (78 $pm$ 18)% at 160um, (80 $pm$ 17)% at 250um, (69 $pm$ 14)% at 350um, (65 $pm$ 12)% at 500um, and (45 $pm$ 8)% at 1100um. Of that total, about 95% originates from star-forming galaxies, while the remaining 5% is from apparently quiescent galaxies. The CIB at $lambda$ < 200um is sourced predominantly from galaxies at z < 1, while at $lambda$ > 200um the bulk originates from 1 < z < 2. Galaxies with stellar masses log(M/ M_sun)=9.5-11 are responsible for the majority of the CIB, with those in the log(M/ M_sun)=9.5-10 contributing mostly at $lambda$ < 250um, and those in the log(M/ M_sun)=10.5-11 bin dominating at $lambda$ > 350um. The contribution from galaxies in the log(M/ M_sun)=9.0-9.5 and log(M/ M_sun)=11.0-12.0 stellar mass bins contribute the least, both of order 5%, although the highest stellar-mass bin is a significant contributor to the luminosity density at z > 2. The luminosities of the galaxies responsible for the CIB shifts from a combination of normal and luminous infrared galaxies (LIRGs) at $lambda$ < 160um, to LIRGs at 160um < $lambda$ < 500um, to finally LIRGs and ultra-luminous infrared galaxies (ULIRGs) at $lambda$ > 500um. Stacking analyses were performed with SIMSTACK (available at http://www.astro.caltech.edu/~viero/viero_homepage/toolbox.html) which accounts for possible biases due to clustering.
146 - M. P. Viero , L. Wang , M. Zemcov 2012
We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500um (1200, 860, and 600 GHz) from observations totaling ~ 70 deg^2 made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy dI / I = 14 +- 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and non-linear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k_theta ~ 0.1 - 0.12 arcmin^-1 (l ~ 2160 - 2380), from 250 to 500um. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources --- suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines towards lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z ~ 1-3, is log(M_peak/M_sun) ~ 12.1 +- 0.5, and that the minimum halo mass to host infrared galaxies is log(M_min/M_sun) ~ 10.1 +- 0.6.
We consider the femto-lensing due to a cosmic string. If a cosmic string with the deficit angle $Deltasim 100$ [femto-arcsec] $sim10^{-18}$ [rad] exists around the line of sight to a gamma-ray burst, we may observe characteristic interference patterns caused by gravitational lensing in the energy spectrum of the gamma-ray burst. This femto-lensing event was first proposed as a tool to probe small mass primordial black holes. In this paper, we propose use of the femto-lensing to probe cosmic strings with extremely small tension. Observability conditions and the event rate are discussed. Differences between the cases of a point mass and a cosmic string are presented.
160 - D. Gruen , S. Seitz , M. R. Becker 2015
Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate mass uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol and z=0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). These biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا