Do you want to publish a course? Click here

Superconductivity and Crystal Structure of the Palladium-Iron-Arsenides Ca10(Fe1-xPdxAs)10Pd3As8

102   0   0.0 ( 0 )
 Added by Dirk Johrendt
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The palladium-iron-arsenides Ca10(Fe1-xPdxAs)10(Pd3As8) were synthesized by solid state methods and characterized by X-ray powder and single crystal diffraction. The triclinic crystal structure (space group P-1) is isotypic to the homologue platinum 1038 type superconductors with alternating FeAs4/4- and Pd3As8-layers, each separated by layers of calcium atoms. Iron is tetrahedral and palladium is planar coordinated by four arsenic atoms. As2-dimers (dAs-As = 250 pm) are present in the Pd3As8-layer. Even though each layer itself has a fourfold rotational symmetry, the shifted layer stacking causes the triclinic space group. Resistivity measurements of La-doped samples show the onset of superconductivity at 17 K and zero resistivity below 10 K. The magnetic shielding fraction is about 20 % at 3.5 K. 57Fe-Mossbauer spectra exhibit one absorption line and show no hint to magnetic ordering. The electronic structure is very similar to the known iron-arsenides with cylinder-like Fermi surfaces and partial nesting between hole- and electron-like sheets. Our results show that superconductivity in the palladium-iron-compounds is present but complicated by too high substitution of iron by palladium in the active FeAs-layers. Since the electronic preconditions are satisfied, we expect higher critical temperatures in Pd1038-compounds with lower or even without Pd-doping in the FeAs-layer.



rate research

Read More

Using a local real-space microscopy probe, we discover evidence of nanoscale interlayer defects along the c-crystallographic direction in BaFe2As2 (122) based iron-arsenide superconductors. We find ordered 122 atomic arrangements within the ab-plane, and within regions of ~10 to 20 nm size perpendicular to this plane. While the FeAs substructure is very rigid, Ba ions are relatively weakly bound and can be displaced from the 122, forming stacking faults resulting in the physical separation of the 122 between adjacent ordered domains. The evidence for interlayer defects between the FeAs superconducting planes gives perspective on the minimal connection between interlayer chemical disorder and high-temperature superconductivity. In particular, the Cooper pairs may be finding a way around such localized interlayer defects through a percolative path of the ordered layered 122 lattice that may not affect Tc.
We investigated the elastic properties of the iron-based superconductor Ba(Fe1-xCox)2As2 with eight Co concentrations. The elastic constant C66 shows large elastic softening associated with the structural phase transition. The C66 was analyzed base on localized and itinerant pictures of Fe-3d electrons, which shows the strong electron-lattice coupling and a possible mass enhancement in this system. The results resemble those of unconventional superconductors, where the properties of the system are governed by the quantum fluctuations associated with the zero-temperature critical point of the long-range order; namely, the quantum critical point (QCP). In this system, the inverse of C66 behaves just like the magnetic susceptibility in the magnetic QCP systems. While the QCPs of these existing superconductors are all ascribed to antiferromagnetism, our systematic studies on the canonical iron-based superconductor Ba(Fe1-xCox)2As2 have revealed that there is a signature of structural quantum criticality in this material, which is so far without precedent. The elastic constant anomaly is suggested to concern with the emergence of superconductivity. These results highlight the strong electron-lattice coupling and effect of the band in this system, thus challenging the prevailing scenarios that focus on the role of the iron 3d-orbitals.
A new layered iron arsenide NaFeAs isostructural with the superconducting lithium analogue, displays evidence for the coexistence of superconductivity and magnetic ordering.
127 - D.J. Singh , M.H. Du , L. Zhang 2008
The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe(Se,Te) have closely related electronic structures. The Fermi surface consists of disconnected hole and electron cylinders and additional hole sections that depend on the specific material. This places the materials in proximity to itinerant magnetism, both due to the high density of states and due to nesting. Comparison of density functional results and experiment provides strong evidence for itinerant spin fluctuations, which are discussed in relation to superconductivity. It is proposed that the intermediate phase between the structural transition and the SDW transition in the oxy-pnictides is a nematic phase.
199 - A. A. Kordyuk 2012
Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron interaction, including the superconducting pairing. The newly discovered iron based superconductors (FeSC) promise interesting physics that stems, on one hand, from a coexistence of superconductivity and magnetism and, on the other hand, from complex multi-band electronic structure. In this review I want to give a simple introduction to the FeSC physics, and to advocate an opinion that all the complexity of FeSC properties is encapsulated in their electronic structure. For many compounds, this structure was determined in numerous ARPES experiments and agrees reasonably well with the results of band structure calculations. Nevertheless, the existing small differences may help to understand the mechanisms of the magnetic ordering and superconducting pairing in FeSC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا