No Arabic abstract
Ground- and space-based observations of solar flares from radio wavelengths to gamma-rays have produced considerable insights but raised several unsolved controversies. The last unexplored wavelength frontier for solar flares is in the range of submillimeter and infrared wavelengths. Here we report the detection of an intense impulsive burst at 30 THz using a new imaging system. The 30 THz emission exhibited remarkable time coincidence with peaks observed at microwave, mm/submm, visible, EUV and hard X-ray wavelengths. The emission location coincides with a very weak white-light feature, and is consistent with heating below the temperature minimum in the atmosphere. However, there are problems in attributing the heating to accelerated electrons. The peak 30 THz flux is several times larger than the usual microwave peak near 9 GHz, attributed to non-thermal electrons in the corona. The 30 THz emission could be consistent with an optically thick spectrum increasing from low to high frequencies. It might be part of the same spectral component found at sub-THz frequencies whose nature remains mysterious. Further observations at these wavelengths will provide a new window for flare studies.
Impulsive 30 THz continuum bursts have been recently observed in solar flares, utilizing small telescopes with a unique and relatively simple optical setup concept. The most intense burst was observed together with a GOES X2 class event on October 27, 2014, also detected at two sub-THz frequencies, RHESSI X-rays and SDO/HMI and EUV. It exhibits strikingly good correlation in time and in space with white light flare emission. It is likely that this association may prove to be very common. All three 30 THz events recently observed exhibited intense fluxes in the range of 104 solar flux units, considerably larger than those measured for the same events at microwave and sub-mm wavelengths. The 30 THz burst emission might be part of the same spectral burst component found at sub-THz frequencies. The 30 THz solar bursts open a promising new window for the study of flares at their origin
The recent discovery of impulsive solar burst emission in the 30 THz band is raising new interpretation challenges. One event associated with a GOES M2 class flare has been observed simultaneously in microwaves, H-alpha, EUV, and soft X-ray bands. Although these new observations confirm some features found in the two prior known events, they exhibit time profile structure discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the Neupert effect). These results suggest a more complex relationship between 30 THz emission and radiation produced at other wavelength ranges. The multiple frequency emissions in the impulsive phase are likely to be produced at a common flaring site lower in the chromosphere. The 30 THz burst emission may be either part of a nonthermal radiation mechanism or due to the rapid thermal response to a beam of high-energy particles bombarding the dense solar atmosphere.
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present the infrared continuum has been detected at 30 THz (10 $mu$m) in only a few flares. In this work we present a detailed multi-frequency analysis of SOL2012-03-13, including observations at radio millimeter and sub-millimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), H-alpha, and white-light. HXR/GR spectral analysis shows that the event is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons and alpha particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at ~800 keV. It is shown that the high-energy part (above ~800 keV) of this distribution is responsible for the high-frequency radio emission (> 20 GHz) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most (~80%) of the observed 30 THz radiation can be attributed to thermal free-free emission of an optically-thin source. Using the F2 flare atmospheric model this thin source is found to be at temperatures T~8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80% of the 30 THz excess radiation, can be due to energy deposition by non-thermal flare accelerated electrons, protons and alpha particles. The remaining 20% of the 30 THz excess emission is found to be radiated from an optically-thick atmospheric layer at T~5000 K, below the temperature minimum region, where direct heating by non-thermal particles is insufficient to account for the observed infrared radiation.
NASAs WB-57 High Altitude Research Program provides a deployable, mobile, stratospheric platform for scientific research. Airborne platforms are of particular value for making coronal observations during total solar eclipses because of their ability both to follow the Moons shadow and to get above most of the atmospheric airmass that can interfere with astronomical observations. We used the 2017 Aug 21 eclipse as a pathfinding mission for high-altitude airborne solar astronomy, using the existing high-speed visible-light and near-/mid-wave infrared imaging suite mounted in the WB-57 nose cone. In this paper, we describe the aircraft, the instrument, and the 2017 mission; operations and data acquisition; and preliminary analysis of data quality from the existing instrument suite. We describe benefits and technical limitations of this platform for solar and other astronomical observations. We present a preliminary analysis of the visible-light data quality and discuss the limiting factors that must be overcome with future instrumentation. We conclude with a discussion of lessons learned from this pathfinding mission and prospects for future research at upcoming eclipses, as well as an evaluation of the capabilities of the WB-57 platform for future solar astronomy and general astronomical observation.
We report the discovery and characterization of a transiting warm sub-Neptune planet around the nearby bright ($V=8.75$ mag, $K=7.15$ mag) solar twin HD 183579, delivered by the Transiting Exoplanet Survey Satellite (TESS). The host star is located $56.8pm0.1$ pc away with a radius of $R_{ast}=0.97pm0.02 R_{odot}$ and a mass of $M_{ast}=1.03pm0.05 M_{odot}$. We confirm the planetary nature by combining space and ground-based photometry, spectroscopy, and imaging. We find that HD 183579b (TOI-1055b) has a radius of $R_{p}=3.53pm0.13 R_{oplus}$ on a $17.47$ day orbit with a mass of $M_{p}=11.2pm5.4 M_{oplus}$ ($3sigma$ mass upper limit of $27.4 M_{oplus}$). HD 183579b is the fifth brightest known sub-Neptune planet system in the sky, making it an excellent target for future studies of the interior structure and atmospheric properties. By performing a line-by-line differential analysis using the high resolution and signal-to-noise ratio HARPS spectra, we find that HD 183579 joins the typical solar twin sample, without a statistically significant refractory element depletion.