Using the exact $N$-particle ground state wave function for a one-dimensional gas of hard-core bosons in a harmonic trap we develop an algorithm to compute the reduced single-particle density matrix and corresponding momentum distribution. Accurate numerical results are presented for up to N=8 particles, and the momentum distributions are compared to a recent analytic approximation.
We describe the use of the exact Yang-Yang solutions for the one-dimensional Bose gas to enable accurate kinetic-energy thermometry based on the root-mean-square width of an experimentally measured momentum distribution. Furthermore, we use the stochastic projected Gross-Pitaevskii theory to provide the first quantitative description of the full momentum distribution measurements of Van Amerongen et al., Phys. Rev. Lett. 100, 090402 (2008). We find the fitted temperatures from the stochastic projected Gross-Pitaevskii approach are in excellent agreement with those determined by Yang-Yang kinetic-energy thermometry.
We investigate the strongly interacting hard-core anyon gases in a one dimensional harmonic potential at finite temperature by extending thermal Bose-Fermi mapping method to thermal anyon-ferimon mapping method. With thermal anyon-fermion mapping method we obtain the reduced one-body density matrix and therefore the momentum distribution for different statistical parameters and temperatures. At low temperature hard-core anyon gases exhibit the similar properties as those of ground state, which interpolate between Bose-like and Fermi-like continuously with the evolution of statistical properties. At high temperature hard-core anyon gases of different statistical properties display the same reduced one-body density matrix and momentum distribution as those of spin-polarized fermions. The Tans contact of hard-core anyon gas at finite temperature is also evaluated, which take the simple relation with that of Tonks-Girardeau gas $C_b$ as $C=frac12(1-coschipi)C_b$.
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
Very recently Girardeau and Minguzzi [arXiv:0807.3366v2, Phys. Rev. A 79, 033610 (2009)] have studied an impurity in a one-dimensional gas of hard-core bosons. In particular they deal with the general case where the mass of the impurity is different from the mass of the bosons and the impurity-boson interaction is not necessarily infinitely repulsive. We show that one of their initial step is erroneous, contradicting both physical intuition and known exact results. Their results in the general case apply only actually when the mass of the impurity is infinite.
Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose gases, we present the experimental measurement of the full momentum-space density correlations $langle delta n_p delta n_{p}rangle$, which are related to the two-body momentum correlation function. Our data span the weakly interacting region of the phase diagram, going from the the ideal Bose gas regime to the quasicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicondensate regime is however characterized by the presence of negative correlations between different momenta, in contrast to Bogolyubov theory for Bose condensates, predicting positive correlations between opposite momenta. Our data are in good agreement with {it ab-initio} calculations.