Do you want to publish a course? Click here

The SUMO project I. A survey of multiple populations in globular clusters

248   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a general overview and the first results of the SUMO project (a SUrvey of Multiple pOpulations in Globular Clusters). The objective of this survey is the study of multiple stellar populations in the largest sample of globular clusters homogeneously analysed to date. To this aim we obtained high signal-to-noise (S/N>50) photometry for main sequence stars with mass down to ~0.5 M_SUN in a large sample of clusters using both archival and proprietary U, B, V, and I data from ground-based telescopes. In this paper, we focus on the occurrence of multiple stellar populations in twenty three clusters. We have defined a new photometric index cubi= (U-B)-(B-I), that turns out to be very effective for identifying multiple sequences along the red giant branch (RGB). We found that in the V-cubi diagram all clusters presented in this paper show broadened or multimodal RGBs, with the presence of two or more components. We found a direct connection with the chemical properties of different sequences, that display different abundances of light elements (O, Na, C, N, and Al). The cubi index is also a powerful tool to identify distinct sequences of stars along the horizontal branch and, for the first time in the case of NGC104 (47 Tuc), along the asymptotic giant branch. Our results demonstrate that i) the presence of more than two stellar populations is a common feature among globular clusters, as already highlighted in previous work; ii) multiple sequences with different chemical contents can be easily identified by using standard Johnson photometry obtained with ground-based facilities; iii) in the study of GC multiple stellar populations the cubi index is alternative to spectroscopy, and has the advantage of larger statistics.



rate research

Read More

119 - G. Piotto 2014
In this paper we describe a new UV-initiative HST project (GO-13297) that will complement the existing F606W and F814W database of the ACS Globular Cluster (GC) Treasury by imaging most of its clusters through UV/blue WFC3/UVIS filters F275W, F336W and F438W. This magic trio of filters has shown an uncanny ability to disentangle and characterize multiple-population (MP) patterns in GCs in a way that is exquisitely sensitive to C, N, and O abundance variations. Combination of these passbands with those in the optical also gives the best leverage for measuring helium enrichment. The dozen clusters that had previously been observed in these bands exhibit a bewildering variety of MP patterns, and the new survey will map the full variance of the phenomenon. The ubiquity of multiple stellar generations in GCs has made the formation of these cornerstone objects more intriguing than ever; GC formation and the origin of their MPs have now become one and the same problem. In the present paper we will describe the data base and our data reduction strategy, as well as the uses we intend to make of the final photometry, astrometry, and proper motions. We will also present preliminary color-magnitude diagrams from the data so far collected. These diagrams also draw on data from GO-12605 and GO-12311, which served as a pilot project for the present GO-13297.
Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.
We have calculated synthetic spectra for typical chemical element mixtures (i.e., a standard alpha-enhanced distribution, and distributions displaying CN and ONa anticorrelations) found in the various subpopulations harboured by Galactic globular clusters. From the spectra we have determined bolometric corrections to the standard Johnson-Cousins and Stroemgren filters, and finally predicted colours. These bolometric corrections and colour-transformations, coupled to our theoretical isochrones with the appropriate chemical composition, provide a complete and self-consistent set of theoretical predictions for the effect of abundance variations on the observed cluster CMD. CNO abundance variations affect mainly wavelengths shorter than 400 nm, due to the arise of molecular absorption bands in cooler atmospheres. As a consequence, colour and magnitude changes are largest in the blue filters, independently of using broad or intermediate bandpasses. Colour-magnitude diagrams involving uvy and UB filters (and their various possible colour combinations) are thus the ones best suited to infer photometrically the presence of multiple stellar generations in individual clusters. They are particularly sensitive to variations in the N abundance, with the largest variations affecting the Red Giant Branch (RGB) and lower Main Sequence (MS). BVI diagrams are expected to display multiple sequences only if the different populations are characterized by variations of the C+N+O sum and helium abundance, that lead to changes in luminosity and effective temperature, but leave the flux distribution above 400 nm practically unaffected. A variation of just the helium abundance, up to the level we investigate here, affects exclusively the interior structure of stars, and is largely irrelevant for the atmospheric structure and the resulting flux distribution in the whole wavelength range spanned by our analysis.
The internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC0104 (47Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC0288, NGC5904 (M5), NGC6121 (M4), NGC6752, NGC6838 (M71) and further explore NGC0104. Among the analyzed clusters only NGC0104 and NGC5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC5904 exhibit different rotation curves.
We investigate the multiple stellar populations of the globular clusters M3, M5, M13, and M71 using $g^prime$ and intermediate-band CN-$lambda 3883$ photometry obtained with the WIYN 0.9-m telescope on Kitt Peak. We find a strong correlation between red giant stars CN$-g^prime$ colors and their spectroscopic sodium abundances, thus demonstrating the efficacy of the two-filter system for stellar population studies. In all four clusters, the observed spread in red giant branch CN$-g^prime$ colors is wider than that expected from photometric uncertainty, confirming the well-known chemical inhomogeneity of these systems. M3 and M13 show clear evidence for a radial dependence in the CN-band strengths of its red giants, while the evidence for such a radial dependence of CN strengths in M5 is ambiguous. Our data suggest that the dynamically old, relatively metal-rich M71 system is well mixed, as it shows no evidence for chemical segregation. Finally, we measure the radial gradients in the integrated CN$-g^prime$ color of the clusters and find that such gradients are easily detectable in the integrated light. We suggest that photometric observations of color gradients within globular clusters throughout the Local Group can be used to characterize their multiple populations, and thereby constrain the formation history of globular clusters in different galactic environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا