Do you want to publish a course? Click here

Scale invariance of a diodelike tunnel junction

268   0   0.0 ( 0 )
 Added by Alessandro Vindigni
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the current vs voltage (I-V) characteristics of a diodelike tunnel junction consisting of a sharp metallic tip placed at a variable distance d from a planar collector and emitting electrons via electric-field assisted emission. All curves collapse onto one single graph when I is plotted as a function of the single scaling variable Vd^{-lambda}, d being varied from a few mm to a few nm, i.e., by about six orders of magnitude. We provide an argument that finds the exponent {lambda} within the singular behavior inherent to the electrostatics of a sharp tip. A simulation of the tunneling barrier for a realistic tip reproduces both the scaling behavior and the small but significant deviations from scaling observed experimentally.



rate research

Read More

We propose a low-temperature thermal rectifier consisting of a chain of three tunnel-coupled normal metal electrodes. We show that a large heat rectification is achievable if the thermal symmetry of the structure is broken and the central island can release energy to the phonon bath. The performance of the device is theoretically analyzed and, under the appropriate conditions, temperature differences up to $sim$ 200 mK between the forward and reverse thermal bias configurations are obtained below 1 K, corresponding to a rectification ratio $mathcal{R} sim$ 2000. The simplicity intrinsic to its design joined with the insensitivity to magnetic fields make our device potentially attractive as a fundamental building block in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.
We propose a conceptually new way to gather information on the electron bands of buried metal(semiconductor)/insulator interfaces. The bias dependence of low frequency noise in Fe$_{1-x}$V$_{x}$/MgO/Fe (0 $<$ x $<$ 0.25) tunnel junctions show clear anomalies at specific applied voltages, reflecting electron tunneling to the band edges of the magnetic electrodes. The change in magnitude of these noise anomalies with the magnetic state allows evaluating the degree of spin mixing between the spin polarized bands at the ferromagnet/insulator interface. Our results are in qualitative agreement with numerical calculations.
Generating correlated photon pairs at the nanoscale is a prerequisite to creating highly integrated optoelectronic circuits that perform quantum computing tasks based on heralded single-photons. Here we demonstrate fulfilling this requirement with a generic tip-surface metal junction. When the junction is luminescing under DC bias, inelastic tunneling events of single electrons produce a photon stream in the visible spectrum whose super-bunching index is 17 when measured with a 53 picosecond instrumental resolution limit. These photon bunches contain true photon pairs of plasmonic origin, distinct from accidental photon coincidences. The effect is electrically rather than optically driven - completely absent are pulsed lasers, down-
141 - O. Parlavecchio 2014
We derive fluctuation-dissipation relations for a tunnel junction driven by a high impedance microwave resonator, displaying strong quantum fluctuations. We find that the fluctuation-dissipation relations derived for classical forces hold, provided the effect of the circuits quantum fluctuations is incorporated into a modified non-linear $I(V)$ curve. We also demonstrate that all quantities measured under a coherent time dependent bias can be reconstructed from their dc counterpart with a photo-assisted tunneling relation. We confirm these predictions by implementing the circuit and measuring the dc current through the junction, its high frequency admittance and its current noise at the frequency of the resonator.
We consider the coupling of a single mode microwave resonator to a tunnel junction whose contacts are at thermal equilibrium. We derive the quantum master equation describing the evolution of the resonator field in the strong coupling regime, where the characteristic impedance of the resonator is larger than the quantum of resistance. We first study the case of a normal-insulator-normal junction and show that a dc driven single photon source can be obtained. We then consider the case of a superconductor-insulator-normal and superconductor-insulator-superconductor junction. There, we show that the Lamb shift induced by the junction gives rise to a nonlinear spectrum of the resonator even when the junction induced losses are negligible. We discuss the resulting dynamics and consider possible applications including quantum Zeno dynamics and the realization of a qubit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا