Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta


Abstract in English

Let K be an algebraically closed, complete non-Archimedean field. The purpose of this paper is to carefully study the extent to which finite morphisms of algebraic K-curves are controlled by certain combinatorial objects, called skeleta. A skeleton is a metric graph embedded in the Berkovich analytification of X. A skeleton has the natural structure of a metrized complex of curves. We prove that a finite morphism of K-curves gives rise to a finite harmonic morphism of a suitable choice of skeleta. We use this to give analytic proofs of stronger skeletonized

Download