No Arabic abstract
The requirement for the absence of spontaneous symmetry breaking in the d=1 dimension has been used to optimize the regulator dependence of functional renormalization group equations in the framework of the sine-Gordon scalar field theory. Results obtained by the optimization of this kind were compared to those of the Litim-Pawlowski and the principle of minimal sensitivity optimization scenarios. The optimal parameters of the compactly supported smooth (CSS) regulator, which recovers all major types of regulators in appropriate limits, have been determined beyond the local potential approximation, and the Litim limit of the CSS was found to be the optimal choice.
We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.
We study nonlinear vacuum electrodynamics in a first-order formulation proposed by Plebanski. By applying a Dirac constraint analysis, we derive an effective Hamiltonian, together with the equations of motion. We show that there exists a large class of potentials for which the effective Hamiltonian is bounded from below, while at the same time possessing stationary points in which the field strength acquires a nonzero vacuum expectation value. The associated spontaneous breaking of Lorentz symmetry can in principle be detected by coupling the model to a suitable external current, or to gravity. We show that the possible vacua can be classified in four classes. We study some of their properties, using explicit examples for illustration.
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl current, $K_mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEVs of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium.
Over half century ago Carl Brans participated in the construction of a viable deformation of the Einstein gravity theory. Their suggestion involves expanding the tensor-based theory by a scalar field. But experimental support has not materialized. Nevertheless the model continues to generate interest and new research. The reasons for the current activity is described in this essay, which is dedicated to Carl Brans on his eightieth birthday.