No Arabic abstract
We explore the effects of neutrino and electron mixing with exotic heavy leptons in the process e^+e^-to W^+W^- within E_6 models. We examine the possibility of uniquely distinguishing and identifying such effects of heavy neutral lepton exchange from Z-Z mixing within the same class of models and also from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to very similar experimental signatures at the e^+e^- International Linear Collider (ILC) for sqrt{s}=350, 500 GeV and 1 TeV. Such clear identification of the model is possible by using a certain double polarization asymmetry. The availability of both beams being polarized plays a crucial role in identifying such exotic-lepton admixture. In addition, the sensitivity of the ILC for probing exotic-lepton admixture is substantially enhanced when the polarization of the produced W^pm bosons is considered.
We study selectron production at an e-e- linear collider. With the help of transverse beam polarizations, we define CP sensitive observables in the production process e- e- --> selectron_L selectron_R. This process proceeds via t-channel and u-channel exchange of neutralinos, and is sensitive to CP violation in the neutralino sector. We present numerical results and estimate the significances to which the CP sensitive observables can be measured.
We investigate selectron pair production and decay in e-e- scattering and e+e- annihilation with polarized beams taking into account neutralino mixing as well as ISR and beamstrahlung corrections. One of the main advantages of having both modes at disposal is their complementarity concerning the threshold behaviour of selectron pair production. In e-e- the cross sections at threshold for seleectron_R selectron_R and selectron_L selectron_L rise proportional to the momentum of the selectron and in e+ e- that for selectron_R selectron_L. Measurements at threshold with polarized beams can be used to determine the selectron masses precisely. Moreover we discuss how polarized electron and positron beams can be used to establish directly the weak quantum numbers of the selectrons. We also use selectron pair production to determine the gaugino mass parameter M_1. This is of particular interest for scenarios with non-universal gaugino masses at a high scale resulting in |M_1| << |M_2| at the electroweak scale. Moreover, we consider also the case of a non-vanishing selectron mixing and demonstrate that it leads to a significant change in the phenomenology of selectrons.
A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.
We discuss in detail top quark polarization in above-threshold (t bar t)-production at a polarized linear e^+ e^- collider. We pay particular attention to the minimization and maximization of the polarization of the top quark by tuning the longitudinal polarization of the e^+ and e^- beams. The polarization of the top quark is calculated in full next-to-leading order QCD. We also discuss the beam polarization dependence of the longitudinal spin-spin correlations of the top and antitop quark spins.
We study the phenomenology of a Standard Model (SM) extension with two charged singlet scalars and three right handed (RH) neutrinos at an electron-positron collider. In this model, the neutrino mass is generated radiatively at three-loop, the lightest RH neutrino is a good dark matter candidate; and the electroweak phase transition strongly first order as required for baryogenesis. We focus on the process $e^{+}+e^{-}rightarrow e^{-}mu^{+}+E_{miss}$, where the model contains new lepton flavor violating interactions that contribute to the missing energy. We investigate the feasibility of detecting this process at future $e^{-}e^{+}$ linear colliders at different center of mass energies: $E_{CM}$=250, 350, 500 GeV and 1 TeV.