No Arabic abstract
We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array (ATCA) imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of ~ 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24microns, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.
We present a 190 ks observation of the Galactic supernova remnant (SNR) G306.3-0.9 with Suzaku. To study ejecta properties of this possible Type Ia SNR, the absolute energy scale at the Fe-K band was calibrated to a level of uncertainty less than 10 eV by a cross-calibration with the Hitomi microcalorimeter using the Perseus cluster spectra. This enabled us for the first time to accurately determine the ionization state of the Fe K$alpha$ line of this SNR. The ionization timescale ($tau$) of the Fe ejecta was measured to be $log_{10} tau$ (cm$^{-3}$ s) $=10.24pm0.03$, significantly smaller than previous measurements. Marginally detected K$alpha$ lines of Cr and Mn have consistent ionization timescales with Fe. The global spectrum was well fitted with shocked interstellar matter (ISM) and at least two ejecta components with different ionization timescales for Fe and intermediate mass elements (IME) such as S and Ar. One plausible interpretation of the one-order-of-magnitude shorter timescale of Fe than that of IME ($log_{10} tau = 11.17pm0.07$) is a chemically stratified structure of ejecta. By comparing the X-ray absorption column to the HI distribution decomposed along the line of sight, we refined the distance to be $sim$20 kpc. The large ISM-to-ejecta shocked mass ratio of $sim$100 and dynamical timescale of $sim$6 kyr place the SNR in the late Sedov phase. These properties are consistent with a stratified ejecta structure that has survived the mixing processes expected in an evolved supernova remnant.
It is widely believe that galactic cosmic rays are originated in supernova remnants (SNRs) where they are accelerated by diffusive shock acceleration process at supernova blast waves driven by expanding SNRs. In recent theoretical developments of the diffusive shock acceleration theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are true generator of cosmic rays, they should accelerate not only protons but also heavier nuclei with right proportion and the maximum energy of heavier nuclei should be atomic mass (Z) times that of protons. In this work we investigate the implications of acceleration of heavier nuclei in SNRs on energetic gamma rays those are produced in hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition instead of pure protons to explain the observation and secondly the gamma ray flux above few tens of TeV would be significantly higher if cosmic rays particles can attain energies Z times of the knee energy in lieu of 200 TeV, as suggested earlier for non-amplified magnetic fields. The two stated maximum energy paradigm will be discriminated in future by the upcoming gamma ray experiments like Cherenkov Telescope array (CTA).
We present the discovery and timing of the young (age $sim 28.6$ kyr) pulsar PSR J0837$-$2454. Based on its high latitude ($b = 9.8^{circ}$) and dispersion measure (DM $ = 143$~pc~cm$^{-3}$), the pulsar appears to be at a $z$-height of $>$1 kpc above the Galactic plane, but near the edge of our Galaxy. This is many times the observed scale height of the canonical pulsar population, which suggests this pulsar may have been born far out of the plane. If accurate, the young age and high $z$-height imply that this is the first pulsar known to be born from a runaway O/B star. In follow-up imaging with the Australia Telescope Compact Array (ATCA), we detect the pulsar with a flux density $S_{1400} = 0.18 pm 0.05$ mJy. We do not detect an obvious supernova remnant around the pulsar in our ATCA data, but we detect a co-located, low-surface-brightness region of $sim$1.5$^circ$ extent in archival Galactic and Extragalactic All-sky MWA Survey data. We also detect co-located H$alpha$ emission from the Southern H$alpha$ Sky Survey Atlas. Distance estimates based on these two detections come out to $sim$0.9 kpc and $sim$0.2 kpc respectively, both of which are much smaller than the distance predicted by the NE2001 model ($6.3$ kpc) and YMW model ($>25$ kpc) and place the pulsar much closer to the plane of the Galaxy. If the pulsar/remnant association holds, this result also highlights the inherent difficulty in the classification of transients as Galactic (pulsar) or extragalactic (fast radio burst) toward the Galactic anti-center based solely on the modeled Galactic electron contribution to a detection.
We present results of a 400-ks Chandra observation of the young shell supernova remnant (SNR) G11.2-0.3, containing a pulsar and pulsar-wind nebula (PWN). We measure a mean expansion rate for the shell since 2000 of 0.0277+/-0.0018% per yr, implying an age between 1400 and 2400 yr, and making G11.2-0.3 one of the youngest core-collapse SNRs in the Galaxy. However, we find very high absorption ($A_V sim 16^m pm 2^m$), confirming near-IR determinations and ruling out a claimed association with the possible historical SN of 386 CE. The PWN shows strong jets and a faint torus within a larger, more diffuse region of radio emission and nonthermal X-rays. Central soft thermal X-ray emission is anticorrelated with the PWN; that, and more detailed morphological evidence, indicates that the reverse shock has already reheated all ejecta and compressed the PWN. The pulsar characteristic energy-loss timescale is well in excess of the remnant age, and we suggest that the bright jets have been produced since the recompression. The relatively pronounced shell and diffuse hard X-ray emission in the interior, enhanced at the inner edge of the shell, indicate that the immediate circumstellar medium into which G11.2-0.3 is expanding was quite anisotropic. We propose a possible origin for G11.2-0.3 in a stripped-envelope progenitor that had lost almost all its envelope mass, in an anisotropic wind or due to binary interaction, leaving a compact core whose fast winds swept previously lost mass into a dense irregular shell, and which exploded as a Type cIIb or Ibc supernova.
FU Orionis-type stars are young stellar objects showing large outbursts due to highly enhanced accretion from the circumstellar disk onto the protostar. FUor-type outbursts happen in a wide variety of sources from the very embedded ones to those with almost no sign of extended emission beyond the disk. The subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. We used VLT/VISIR to obtain the first spectra that cover the 8-13 $mu$m mid-infrared wavelength range in low-resolution of five recently discovered FUors. Four objects from our sample show the 10 $mu$m silicate feature in emission. We study the shape and strength of the silicate feature in these objects and find that they mostly contain large amorphous grains, suggesting that large grains are typically not settled to the midplane in FUor disks. This is a general characteristic of FUors, as opposed to regular T Tauri-type stars whose disks display anything from pristine small grains to significant grain growth. We classify our targets by determining whether the silicate feature is in emission or in absorption, and confront them with the evolutionary scenarios on the dispersal of the envelopes around young stars. In our sample, all Class II objects exhibit silicate emission, while for Class I objects, the appearance of the feature in emission or absorption depends on the viewing angle with respect to the outflow cavity. This highlights the importance of geometric effects when interpreting the silicate feature.