No Arabic abstract
We present the results of optical (R band) photometric and polarimetric monitoring and Very Long Baseline Array (VLBA) imaging of the blazar S5 0716+714 along with Fermi gamma-ray data during a multi-waveband outburst in 2011 October. We analyze total and polarized intensity images of the blazar obtained with the VLBA at 43 GHz during and after the outburst. Monotonic rotation of the linear polarization vector at a rate of >50 degrees per night coincided with a sharp maximum in gamma-ray and optical flux. At the same time, within the uncertainties, a new superluminal knot appeared, with an apparent speed of ~21c. The general multi-frequency behavior of the outburst can be explained within the framework of a shock wave propagating along a helical path in the blazars jet.
We analyzed the multi-band optical behaviour of the BL Lacertae object, S5 0716+714, during its outburst state from 2014 November - 2015 March. We took data on 23 nights at three observatories, one in India and two in Bulgaria, making quasi-simultaneous observations in B, V, R, and I bands. We measured multi-band optical fluxes, colour and spectral variations for this blazar on intraday and short timescales. The source was in a flaring state during the period analyzed and displayed intense variability in all wavelengths. R band magnitude of 11.6 was attained by the target on 18 Jan 2015, which is the brightest value ever recorded for S5 0716+714. The discrete correlation function method yielded good correlation between the bands with no measurable time lags, implying that radiation in these bands originate from the same region and by the same mechanism. We also used the structure function technique to look for characteristic timescales in the light curves. During the times of rapid variability, no evidence for the source to display spectral changes with magnitude was found on either of the timescales. The amplitude of variations tends to increase with increasing frequency with a maximum of $sim$ 22% seen during flaring states in B band. A mild trend of larger variability amplitude as the source brightens was also found. We found the duty cycle of our source during the analyzed period to be $sim$ 90%. We also investigated the optical spectral energy distribution of S5 0716+714 using B, V, R, and I data points for 21 nights. We briefly discuss physical mechanisms most likely responsible for its flux and spectral variations.
S5 0716+714 is a well known BL Lac object, one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV) by MAGIC happened in 2008. In January 2015 the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with 13{sigma} significance (ATel 6999). Rich multiwavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE (0.1 < HE < 300 GeV) and VHE band, together with radio (Metsahovi, OVRO, VLBA, Effelsberg), sub-millimeter (SMA), optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata), X-ray and UV (Swift-XRT and UVOT), in the same time-window and discuss the time variability of the multiwavelength light curves during this impressive outburst.
Ground-space interferometer RadioAstron provides unique opportunity to probe detail structure of the distant active galactic nuclei at $mu$as scales. Here we report on RadioAstron observations of the BL Lac object S5 0716$+$71, performed in a framework of the AGN Polarization and Survey Key Science Programs at 22 GHz during 2012-2018. We obtained the highest angular resolution image of the source to date, at $57times24 mu$as. It reveals complex structure of the blazar jet in the inner 100 $mu$as, with emission regions that can be responsible for the blazar variability at timescales of a few days to week. Linear polarization is detected in the core and jet areas at the projected baselines up to about $5.6$ Earth diameters. The observed core brightness temperature in the source frame of $geq2.2times10^{13}$ K is in excess of theoretical limits, suggesting the physical conditions are far from the equipartition between relativistic particles and magnetic field.
The BL Lac object S5~0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band. The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission. Multi-wavelength light curves have been studied together with the broadband Spectral Energy Distributions (SEDs). The data set collected spans from radio, optical photometry and polarimetry, X-ray, high-energy (HE, 0.1 GeV < E < 100 GeV) with textit{Fermi}-LAT to the very-high-energy (VHE, E>100 GeV) with MAGIC. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the VHE. In the constructed SED the textit{Swift}-XRT+textit{NuSTAR} data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1~GeV to 600~GeV by textit{Fermi}+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to $gamma$-ray data. Instead we use a two-zone model. The EVPA shows an unprecedented fast rotation. An estimation of the redshift of the source by combined HE and VHE data provides a value of $z = 0.31 pm 0.02_{stats} pm 0.05_{sys}$, confirming the literature value. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modelling.
Using millimeter-very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet i.e. position angle. The gamma-ray data obtained by the Fermi-LAT (Large Area Telescope) are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the gamma-ray flux variations and the position angle (PA) variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that the mm-VLBI core flux density variations are delayed with respect to the gamma-ray flux by 82$pm$32 days. This suggests that the high-energy emission is coming from a region located $geq$(3.8$pm$1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). These results imply that the observed inner jet morphology has a strong connection with the observed gamma-ray flares.