Do you want to publish a course? Click here

Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region

144   0   0.0 ( 0 )
 Added by Alvaro Hacar
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) Context. Core condensation is a critical step in the star-formation process, but is still poorly characterized observationally. Aims. We have studied the 10 pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed out of the lower-density cloud material. Results. From the N$_2$H$^+$ emission, we identify 19 dense cores, some starless and some protostellar. They are not distributed uniformly, but tend to cluster with relative separations on the order of 0.25 pc. From the C$^{18}$O emission, we identify multiple velocity components in the gas. We have characterized them by fitting gaussians to the spectra, and by studying the distribution of the fits in position-position-velocity space. In this space, the C$^{18}$O components appear as velocity-coherent structures, and we have identified them automatically using a dedicated algorithm (FIVe: Friends In Velocity). Using this algorithm, we have identified 35 filamentary components with typical lengths of 0.5 pc, sonic internal velocity dispersions, and mass-per-unit-length close to the stability threshold of isothermal cylinders at 10 K. Core formation seems to have occurred inside the filamentary components via fragmentation, with a small number of fertile components with larger mass-per-unit-length being responsible for most cores in the cloud. At large scales, the filamentary components appear grouped into families, which we refer to as bundles. Conclusions. Core formation in L1495/B213 has proceeded by hierarchical fragmentation. The cloud fragmented first into several pc-scale regions. Each of these regions later fragmented into velocity-coherent filaments of about 0.5 pc in length. Finally, a small number of these filaments fragmented quasi-statically and produced the individual dense cores we see today.



rate research

Read More

161 - M. Tafalla , A. Hacar 2014
(Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the dense cores in L1495/B213 are significantly clustered in linear chain-like groups about 0.5pc long. The internal motions in these chains are mostly subsonic and the velocity is continuous, indicating that turbulence dissipation in the cloud has occurred at the scale of the chains and not at the smaller scale of the individual cores. The chains also present an approximately constant abundance of N2H+ and radial intensity profiles that can be modeled with a density law that follows a softened power law. A simple analysis of the spacing between the cores using an isothermal cylinder model indicates that the cores have likely formed by gravitational fragmentation of velocity-coherent filaments. Combining our analysis of the cores with our previous study of the large-scale C18O emission from the cloud, we propose a two-step scenario of core formation in L1495/B213. In this scenario, named fray and fragment, L1495/B213 originated from the supersonic collision of two flows. The collision produced a network of intertwined subsonic filaments or fibers (fray step). Some of these fibers accumulated enough mass to become gravitationally unstable and fragment into chains of closely-spaced cores. This scenario may also apply to other regions of star formation.
We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $mu$m and 500 $mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$times$10$^{12}$ $-$ 1$times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_odot$ to 9.5 M$_odot$. The masses of NH$_3$ leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests these leaves are gravitationally unbound structures. 9 out of 39 NH$_3$ leaves are gravitationally bound and 7 out of 9 gravitationally bound NH$_3$ leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure-confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.
172 - Igor I. Zinchenko 2019
We investigate at a high angular resolution the spatial and kinematic structure of the S255IR high mass star-forming region, which demonstrated recently the first disk-mediated accretion burst in the massive young stellar object. The observations were performed with ALMA in Band 7 at an angular resolution $ sim 0.1^{primeprime}$, which corresponds to $ sim 180 $ AU. The 0.9 mm continuum, C$^{34}$S(7-6) and CCH $N=4-3$ data show a presence of very narrow ($ sim 1000 $ AU), very dense ($nsim 10^7$ cm$^{-3}$) and warm filamentary structures in this area. At least some of them represent apparently dense walls around the high velocity molecular outflow with a wide opening angle from the S255IR-SMA1 core, which is associated with the NIRS3 YSO. This wide-angle outflow surrounds a narrow jet. At the ends of the molecular outflow there are shocks, traced in the SiO(8-7) emission. The SiO abundance there is enhanced by at least 3 orders of magnitude. The CO(3-2) and SiO(8-7) data show a collimated and extended high velocity outflow from another dense core in this area, SMA2. The outflow is bent and consists of a chain of knots, which may indicate periodic ejections possibly arising from a binary system consisting of low or intermediate mass protostars. The C$^{34}$S emission shows evidence of rotation of the parent core. Finally, we detected two new low mass compact cores in this area (designated as SMM1 and SMM2), which may represent prestellar objects.
We present deep CCS and HC$_7$N observations of the L1495-B218 filaments in the Taurus molecular cloud obtained using the K-band focal plane array on the 100m Green Bank Telescope. We observed the L1495-B218 filaments in CCS $J_N$ = 2$_1$$-$1$_0$ and HC$_7$N $J$ = 21$-$20 with a spectral resolution of 0.038 km s$^{-1}$ and an angular resolution of 31$$. We observed strong CCS emission in both evolved and young regions and weak emission in two evolved regions. HC$_7$N emission is observed only in L1495A-N and L1521D. We find that CCS and HC$_7$N intensity peaks do not coincide with NH$_3$ or dust continuum intensity peaks. We also find that the fractional abundance of CCS does not show a clear correlation with the dynamical evolutionary stage of dense cores. Our findings and chemical modeling indicate that the fractional abundances of CCS and HC$_7$N are sensitive to the initial gas-phase C/O ratio, and they are good tracers of young condensed gas only when the initial C/O is close to solar value. Kinematic analysis using multiple lines including NH$_3$, HC$_7$N, CCS, CO, HCN, & HCO$^+$ suggests that there may be three different star formation modes in the L1495-B218 filaments. At the hub of the filaments, L1495A/B7N has formed a stellar cluster with large-scale inward flows (fast mode), while L1521D, a core embedded in a filament, is slowly contracting due to its self-gravity (slow mode). There is also one isolated core that appears to be marginally stable and may undergo quasi-static evolution (isolated mode).
The formation scenario of brown dwarfs is still unclear because observational studies to investigate its initial condition are quite limited. Our systematic survey of nearby low-mass star-forming regions using the Atacama Compact Array (aka Morita array) and the IRAM 30 m telescope in 1.2 mm continuum has identified a centrally concentrated starless condensation with a central H$_2$ volume density of $sim$10$^6$ cm$^{-3}$, MC5-N, connected to a narrow (width $sim$0.03 pc) filamentary cloud in the Taurus L1495 region. The mass of the core is $sim$0.2-0.4 $M_{odot}$, which is an order of magnitude smaller than typical low-mass prestellar cores. Taking into account a typical core to star formation efficiency for prestellar cores ($sim$20%-40%) in nearby molecular clouds, brown dwarf(s) or very low-mass star(s) may be going to be formed in this core. We have found possible substructures at the high-density portion of the core, although much higher angular resolution observation is needed to clearly confirm them. The subsequent N$_2$H$^+$ and N$_2$D$^+$ observations using the Nobeyama 45 m telescope have confirmed the high-deuterium fractionation ($sim$30%). These dynamically and chemically evolved features indicate that this core is on the verge of proto-brown dwarf or very low-mass star formation and is an ideal source to investigate the initial conditions of such low-mass objects via gravitational collapse and/or fragmentation of the filamentary cloud complex.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا