Do you want to publish a course? Click here

Cation diffusion and hybridization effects at the Mn-GaSe(0001) interface probed by soft X-ray electron spectroscopies

113   0   0.0 ( 0 )
 Added by Giovanni Drera
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic properties of the Mn:GaSe interface, produced by evaporating Mn at room temperature on an epsilon-GaSe(0001) single crystal surface, have been studied by soft X-ray spectroscopies. Substitutional effects of Mn replacing Ga cations and Mn-Se hybridization effects are found both in core level and valence band photoemission spectra. The Mn cation valence state is probed by XAS measurements at the Mn L-edge, which indicate that Mn diffuses into the lattice as a Mn2+ cation with negligible crystal field effects. The Mn spectral weight in the valence band is probed by resonant photoemission spectroscopy at the Mn L-edge, which also allowed an estimation of the charge transfer and Mott-Hubbard energies on the basis of impurity-cluster configuration-interaction model of the photoemission process. The charge transfer energy is found to scale with the energy gap of the system. Competing effects of Mn segregation on the surface have been identified, and the transition from the Mn diffusion through the surface to the segregation of metallic layers on the surface has been tracked by core-level photoemission.



rate research

Read More

We have studied the electronic structure of ferrimagnetic Mn2VAl single crystal by means of soft X-ray absorption spectroscopy (XAS), X-ray absorption magnetic circular dichroism (XMCD) and resonant soft X-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all constitute elements, supporting the spin polarized states at the Fermi level. The Mn $L_{2,3}$ XAS and XMCD spectra are reproduced by the spectral simulation based on density-functional theory (DFT), indicating itinerant character of the Mn 3d states. On the other hand, V $3d$ electrons are rather localized since the ionic model can qualitatively explain the V $L_{2,3}$ XAS and XMCD spectra as well as the local dd excitation revealed by V $L_3$ RIXS.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals only due to paramagnetic Mn$^{2+}$ ions were observed in ZnO:Mn, nonmagnetic, paramagnetic and ferromagnetic Mn$^{2+}$ ions coexist in ZnO:Mn,N. XMCD signals of ZnO:Mn,N revealed that the localized Mn$^{2+}$ ground state and Mn$^{2+}$ state hybridized with ligand hole coexisted, implying $p$-$d$ exchange coupling. In the valence-band spectra, spectral weight near the Fermi level was suppressed, suggesting that interaction between magnetic moments in ZnO:Mn,N has localized nature.
We have examined the local 3d electronic structures of Co-Au multinuclear complexes with the medicinal molecules D-penicillaminate (D-pen) [Co{Au(PPh3)(D-pen)}2]ClO4 and [Co3{Au3(tdme)(D-pen)3}2] by Co L_2,3-edge soft X-ray absorption (XAS) spectroscopy, where PPh3 denotes triphenylphosphine and tdme stands for 1,1,1-tris[(diphenylphosphino)methyl]ethane. The Co L_2,3-edge XAS spectra indicate the localized ionic 3d electronic states in both materials. The experimental spectra are well explained by spectral simulation for a localized Co ion under ligand fields with the full multiplet theory, which verifies that the ions are in the low-spin Co3+ state in the former compound and in the high-spin Co2+ state in the latter.
The origin of the interfacial perpendicular magnetic anisotropy (PMA) induced in the ultrathin Fe layer on the Au(111) surface was examined using synchrotron-radiation-based M{o}ssbauer spectroscopy (MS), X-ray magnetic circular dichroism (XMCD), and angle-resolved photoemission spectroscopy (ARPES). To probe the detailed interfacial electronic structure of orbital hybridization between the Fe 3$d$ and Au 6$p$ bands, we detected the interfacial proximity effect, which modulates the valence-band electronic structure of Fe, resulting in PMA. MS and XMCD measurements were used to detect the interfacial magnetic structure and anisotropy in orbital magnetic moments, respectively. $In$-$situ$ ARPES also confirms the initial growth of Fe on large spin-orbit coupled surface Shockley states under Au(111) modulated electronic states in the vicinity of the Fermi level. This suggests that PMA in the Fe/Au(111) interface originates from the cooperation effects among the spin, orbital magnetic moments in Fe, and large spin-orbit coupling in Au. These findings pave the way to develop interfacial PMA using $p$-$d$ hybridization with a large spin-orbit interaction.
123 - M. Paul , A. Mueller , A. Ruff 2009
Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, and chemical nature. Employing the considerably enhanced probing depth of HAXPES as compared to conventional x-ray photoelectron spectroscopy (XPS) allows us to investigate the chemical state of the film-substrate interfaces. The degree of oxidation and intermixing at the interface are dependent on the applied growth conditions; in particular, we found that metallic Fe, As2O3, and Ga2O3 exist at the interface. These interface phases might be detrimental for spin injection from magnetite into GaAs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا