Quantum critical metals in $d=3+1$


Abstract in English

We study the problem of disorder-free metals near a continuous Ising nematic quantum critical point in $d=3+1$ dimensions. We begin with perturbation theory in the `Yukawa coupling between the electrons and undamped bosons (nematic order parameter fluctuations) and show that the perturbation expansion breaks down below energy scales where the bosons get substantially Landau damped. Above this scale however, we find a regime in which low-energy fermions obtain an imaginary self-energy that varies linearly with frequency, realizing the `marginal Fermi liquid phenomenologycite{Varma}. We discuss a large N theory in which the marginal Fermi liquid behavior is enhanced while the role of Landau damping is suppressed, and show that quasiparticles obtain a decay rate parametrically larger than their energy.

Download