Phase diagram of doped BaFe$_2$As$_2$ superconductor under broken $C_4$ symmetry


Abstract in English

We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from $C_4$ to $D_{2d}$, which accurately describes the Fermi surface evolution of the electron-doped BaFe$_{2-x}$Co$_x$As$_2$ and hole-doped Ba$_{1-y}$K$_y$Fe$_2$As$_2$ compounds. An investigation of the phase diagram with a mean-field $t$-$U$-$V$ Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of $t$, $U$ and $V$ parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits $s^pm$-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting $s^pm + d$-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian.

Download