No Arabic abstract
A method to calculate the crystal field parameters {it ab initio} is proposed and applied to trivalent rare earth impurities in yttrium aluminate and to Tb$^{3+}$ ion in TbAlO$_3$. To determine crystal field parameters local Hamiltonian expressed in basis of Wannier functions is expanded in a series of spherical tensor operators. Wannier functions are obtained by transforming the Bloch functions calculated using the density functional theory based program. The results show that the crystal field is continuously decreasing as the number of $4f$ electrons increases and that the hybridization of $4f$ states with the states of oxygen ligands is important. Theory is confronted with experiment for Nd$^{3+}$ and Er$^{3+}$ ions in YAlO$_3$ and for Tb$^{3+}$ ion in TbAlO$_3$ and a fair agreement is found.
Crystal electric field states in rare earth intermetallics show an intricate entanglement with the many-body physics that occurs in these systems and that is known to lead to a plethora of electronic phases. Here, we attempt to trace different contributions to the crystal electric field (CEF) splittings in CeIrIn$_5$, a heavy-fermion compound and member of the Ce$M$In$_5$ ($M$= Co, Rh, Ir) family. To this end, we utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) and present a spectroscopic study of the electronic structure of this unconventional superconductor over a wide temperature range. As a result, we show how ARPES can be used in combination with thermodynamic measurements or neutron scattering to disentangle different contributions to the CEF splitting in rare earth intermetallics. We also find that the hybridization is stronger in CeIrIn$_5$ than CeCoIn$_5$ and the effects of the hybridization on the Fermi volume increase is much smaller than predicted. By providing the first experimental evidence for $4f_{7/2}^{1}$ splittings which, in CeIrIn$_5$, split the octet into four doublets, we clearly demonstrate the many-body origin of the so-called $4f_{7/2}^{1}$ state.
An indispensable step to understand collective magnetic phenomena in rare-earth compounds is the determination of spatially-anisotropic single-ion properties resulting from spin-orbit coupling and crystal field (CF). The CF Hamiltonian has a discrete energy spectrum -- accessible to spectroscopic probes such as neutron scattering -- controlled by a number of independent parameters reflecting the point-symmetry of the magnetic sites. Determining these parameters in low-symmetry systems is often challenging. Here, we describe a general method to analyze CF excitation spectra using adjustable effective point-charges. We benchmark our method to existing neutron-scattering measurements on pyrochlore rare-earth oxides and obtain a universal point-charge model that describes a large family of related materials. We adapt this model to the newly discovered tripod Kagome magnets ($R_{3}$Mg$_2$Sb$_{3}$O$_{14}$, $R$ = Tb, Ho, Er, Yb) for which we report broadband inelastic neutron-scattering spectra. Analysis of these data using adjustable point-charges yields the CF wave-functions for each compound. From this, we calculate thermomagnetic properties that accurately reflect our measurements on powder samples, and predict the effective gyromagnetic tensor for pseudo-spin degrees of freedom -- a crucial step to understand the exotic collective properties of these kagome magnets at low temperature. We present further applications of our method to other tripod kagome materials and triangular rare-earth compounds $R$MgGaO$_4$ ($R$ =Yb, Tm). Overall, this study establishes a widely applicable methodology to predict CF and single-ion properties of rare-earth compounds based on interpretable and adjustable models of effective point-charges.
YbMgGaO$_{4}$, a structurally perfect two-dimensional triangular lattice with odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments of Yb$^{3+}$ ions, is likely to experimentally realize the quantum spin liquid ground state. We report the first experimental characterization of single crystal YbMgGaO$_{4}$ samples. Due to the spin-orbit entanglement, the interaction between the neighboring Yb$^{3+}$ moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new lights on the search of quantum spin liquids in strong spin-orbit coupled insulators.
A versatile method for combining density functional theory (DFT) in the local density approximation (LDA) with dynamical mean-field theory (DMFT) is presented. Starting from a general basis-independent formulation, we use Wannier functions as an interface between the two theories. These functions are used for the physical purpose of identifying the correlated orbitals in a specific material, and also for the more technical purpose of interfacing DMFT with different kinds of band-structure methods (with three different techniques being used in the present work). We explore and compare two distinct Wannier schemes, namely the maximally-localized-Wannier-function (MLWF) and the $N$-th order muffin-tin-orbital (NMTO) methods. Two correlated materials with different degrees of structural and electronic complexity, SrVO3 and BaVS3, are investigated as case studies. SrVO3 belongs to the canonical class of correlated transition-metal oxides, and is chosen here as a test case in view of its simple structure and physical properties. In contrast, the sulfide BaVS3 is known for its rich and complex physics, associated with strong correlation effects and low-dimensional characteristics. New insights into the physics associated with the metal-insulator transition of this compound are provided, particularly regarding correlation-induced modifications of its Fermi surface. Additionally, the necessary formalism for implementing self-consistency over the electronic charge density in a Wannier basis is discussed.
Within this paper we outline a method able to generate truly minimal basis sets which describe either a group of bands, a band, or even just the occupied part of a band accurately. These basis sets are the so-called NMTOs, Muffin Tin Orbitals of order N. For an isolated set of bands, symmetrical orthonormalization of the NMTOs yields a set of Wannier functions which are atom-centered and localized by construction. They are not necessarily maximally localized, but may be transformed into those Wannier functions. For bands which overlap others, Wannier-like functions can be generated. It is shown that NMTOs give a chemical understanding of an extended system. In particular, orbitals for the pi and sigma bands in an insulator, boron nitride, and a semi-metal, graphite, will be considered. In addition, we illustrate that it is possible to obtain Wannier-like functions for only the occupied states in a metallic system by generating NMTOs for cesium. Finally, we visualize the pressure-induced s to d transition.