Do you want to publish a course? Click here

Three Family SU(5) GUT and Inverted Neutrino Mass Hierarchy

186   0   0.0 ( 0 )
 Added by Zurab Tavartkiladze
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Supersymmetric SU(5) GUT augmented with anomaly free U(1)_F flavor symmetry is presented. Very economical field content and U(1)_F charge assignment are obtained by specific construction. In particular, three families of 10+5* chiral matter, along the SU(5) singlet states (some of which serve as right handed neutrinos) are obtained. Appealing texture zero Yukawa matrices provide natural understanding of hierarchies between charged fermion masses and mixings. The model predicts inverted hierarchical neutrino mass scenario with interesting implications.



rate research

Read More

We study the feasibility of realizing supersymmetric new inflation model, introduced by Senoguz and Shafi in [1], for $SU(5)$ and flipped $SU(5)$ models of grand unified theories (GUTs). This realization requires an additional $U(1)_R times Z_{n}$ symmetry for its successful implementation. The standard model (SM) gauge singlet scalar components of $24_H$ and $10_H$ GUT Higgs superfields are respectively employed to realize successful inflation in $SU(5)$ and flipped $SU(5)$ models. The predictions of the various inflationary observables lie within the recent Planck bounds on the scalar spectral index, $n_s$, for $n geq 5$ in $SU(5)$ model and for $n geq 6$ in flipped $SU(5)$ model. In particular, the tensor to scalar ratio $r$ and the running of spectral index $d n_s/ dln k$ are negligibly small and lie in the range, $10^{-12} lesssim r lesssim 10^{-8}$ and $10^{-9} lesssim dn_s/dln k lesssim 10^{-3}$, for realistic values of $n$. In numerical estimation of the various predictions, we fix the gauge symmetry breaking scale, $M$, around $2 times 10^{16}$ GeV. The issue of gauge coupling unification in $R$-symmetric $SU(5)$ is evaded by adding vectorlike families with mass splitting within their multiplets. The dilution of monopoles beyond the observable limit is naturally achieved in the breaking of $SU(5)$ gauge symmetry during inflation. A realistic scenario of reheating with non-thermal leptogenesis is employed for both models. The predicted range of reheat temperature within Planck bounds, $3 times 10^{7}text{ GeV }lesssim T_r lesssim 2 times 10^{9}$ GeV, is safe from the gravitino problem for the gravitino mass, $m_{3/2} gtrsim 10$ TeV. Finally, the $U(1)_R times Z_{n}$ symmetry is also observed to play a crucial role in suppressing the various fast proton decay operators.
We minimally extend the Standard Model field content by adding new vector-like fermions at the TeV scale to allow gauge coupling unification at a realistic scale. We embed the model into a $SU(5)$ grand unified theory that is asymptotically safe and features an interacting fixed point for the gauge coupling. There are no Landau poles of the $U(1)$ gauge and Higgs couplings. Gauge, Yukawa and Higgs couplings are retraced from the fixed point and matched at the grand unification scale to those of the Standard Model rescaled up to the same energy. All couplings, their fixed point values and critical exponents always remain in the perturbative regime.
We discuss the $SU(5)$ grand unified extension of flavour models with multiple modular symmetries. The proposed model involves two modular $S_4$ groups, one acting in the charged fermion sector, associated with a modulus field value $tau_T$ with residual $Z_3^T$ symmetry, and one acting in the right-handed neutrino sector, associated with another modulus field value $tau_{SU}$ with residual $Z_2^{SU}$ symmetry. Quark and lepton mass hierarchies are naturally generated with the help of weightons, which are SM singlet fields, where their non-zero modular weights play the role of Froggatt-Nielsen charges. The model predicts TM$_1$ lepton mixing, and neutrinoless double beta decay at rates close to the sensitivity of current and future experiments, for both normal and inverted orderings, with suppressed corrections from charged lepton mixing due to the triangular form of its Yukawa matrix.
The effects of CP-phases on the three absolute quasi-degenerate Majorana neutrino (QDN) masses are stud-ied with neutrino mass matrices obeying {mu} - {tau} symmetry for normal as well as inverted hierarchical mass patterns. We have made further investigations on 1) the prediction of solar mixing angle which lies below tri-bimaximal mixing value in consistent with neutrino oscillation observational data, 2) the prediction on absolute neutrino mass parameter (mee) in 0{ u}{beta}{beta} decay, and 3) cosmological bound on the sum of the three absolute neutrino masses. The numerical analysis is carried out through the parameterization of neu- trino mass matrices using only two unknown parameters ({epsilon}, {eta}) within {mu} - {tau} symmetry. The results show the validity of QDN mass models in both normal and inverted hierarchical patterns. These models are far from discrimination and hence not yet ruled out. The results presented in this article are new and have subtle ef- fects in the discrimination of neutrino mass models.
We consider a SU(5) x U(1)_F GUT-flavor model in which the number of effects that determine the charged fermions Yukawa matrices is much larger than the number of observables, resulting in a hierarchical fermion spectrum with no particular regularities. The GUT-flavor symmetry is broken by flavons in the adjoint of SU(5), realizing a variant of the Froggatt-Nielsen mechanism that gives rise to a large number of effective operators. By assuming a common mass for the heavy fields and universality of the fundamental Yukawa couplings, we reduce the number of free parameters to one. The observed fermion mass spectrum is reproduced thanks to selection rules that discriminate among various contributions. Bottom-tau Yukawa unification is preserved at leading order, but there is no unification for the first two families. Interestingly, U(1)_F charges alone do not determine the hierarchy, and can only give upper bounds on the parametric suppression of the Yukawa operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا