No Arabic abstract
We present statistical characteristics of 1,578 {delta} Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from the works done by Rodr{i}guez and collected the remaining 54% stars (860 stars) from other literatures. We updated the entries with the latest information of sky coordinate, color, rotational velocity, spectral type, period, amplitude and binarity. The majority of our sample are well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag) and spectral types (A-F type). Given this list of {delta} Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in the Rodr{i}guezs works. All the {delta} Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their rarity and uniqueness in showing {delta} Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the web interface http://stardb.yonsei.ac.kr/DeltaScuti
We have performed a frequency analysis of 10,092 Delta Scuti-type stars detected in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge, which is the most numerous homogeneous sample of Delta Scuti stars observed so far. The main goal was to search for stars pulsating in at least two radial modes simultaneously. We have found 3083 candidates for such stars, which is the largest set obtained to date. Among them, 2655 stars pulsate in two radial modes, 414 stars pulsate in three radial modes, and 14 stars pulsate in four radial modes at the same time. We report the identification of 221 Delta Scuti stars pulsating in the fundamental mode, first overtone, and third overtone simultaneously. We show the most populated Petersen and Bailey diagrams and discuss statistical properties of the identified frequencies based on this numerous sample. Additionally, we present theoretical predictions of period ratios for Delta Scuti stars pulsating in overtones from the fourth to the seventh.
We present a collection of 10 111 genuine delta Sct-type pulsating variable stars detected in the OGLE-IV Galactic bulge fields. In this sample, 9835 variables are new discoveries. For most of the stars photometric data cover the whole decade 2010-2019. We illustrate a huge variety of light curve shapes of delta Sct variables. Long-term observations have allowed us to spot objects with evident period, amplitude, and mean brightness variations. Our analysis indicates that about 28% of the stars are single-mode pulsators. Fourteen delta Sct stars show additional eclipsing or ellipsoidal binary modulation. We report significant attenuation or even disappearance of the pulsation signal in six sources. The whole set of variables is a mix of objects representing various Milky Ways populations, with the majority of stars from the Galactic bulge. There are also representatives of the Sagittarius Dwarf Spheroidal Galaxy. Some of the newly detected variables could be SX Phe-type stars residing in globular clusters. The collection, including full V- and I-band time-series data, is available to the astronomical community from the OGLE On-line Data Archive.
Eclipsing binaries with a $delta$ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of 6 primary $delta$ Sct components in eclipsing binaries has been performed. Values of $T_{rm eff}$, $v sin i$, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of $delta$ Sct stars in eclipsing binaries is presented. In this list, we have only given the $delta$ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary $delta$ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g., mass, radius) of 92 $delta$ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member $delta$ Sct stars has been made. We find that single $delta$ Sct stars pulsate in longer periods and with higher amplitudes than the primary $delta$ Sct components in eclipsing binaries. The $v sin i$ of $delta$ Sct components is found to be significantly lower than that of single $delta$ Sct stars. Relationships between the pulsation periods, amplitudes, and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, $T_{rm eff}$, $log g$, radius, mass ratio, $v sin i$, and the filling factor have been found.
We investigate the pulsation properties of stellar models representative of $delta$ Scuti and $gamma$ Doradus variables. We have calculated a grid of stellar models from 1.2 to 2.2 M$_{odot}$, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss observable patterns in the frequency spacing for $p$ modes and the period spacings for g modes. Using the observable patterns in g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid, and investigate the variation with convective overshoot and rotation. The variation in Q values of radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. As a test case, we apply this method to a sample of 22 high amplitude $delta$ Scuti stars (HADS), and provide estimates for the convective overshoot of the sample.
The NASA Kepler and follow-on K2 missions (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on $delta$ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology.