We study nonlinear phenomena of bistability and chaos at a level of few quanta. For this purpose we consider a single-mode dissipative oscillator with strong Kerr nonlinearity with respect to dissipation rate driven by a monochromatic force as well as by a train of Gaussian pulses. The quantum effects and decoherence in oscillatory mode are investigated on the framework of the purity of states and the Wigner functions calculated from the master equation. We demonstrate the quantum chaotic regime by means of a comparison between the contour plots of the Wigner functions and the strange attractors on the classical Poincare section. Considering bistability at low-limit of quanta, we analyze what is the minimal level of excitation numbers at which the bistable regime of the system is displayed? We also discuss the formation of oscillatory chaotic regime by varying oscillatory excitation numbers at ranges of few quanta. We demonstrate quantum-interference phenomena that are assisted hysteresis-cycle behavior and quantum chaos for the oscillator driven by the train of Gaussian pulses as well as we establish the border of classical-quantum correspondence for chaotic regimes in the case of strong nonlinearities.
We discuss phase-locking phenomena at low-level of quanta for parametrically driven nonlinear Kerr resonator (PDNR) in strong quantum regime. Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the Wigner functions of cavity mode showing two-fold symmetry in phase space and analyse formation of phase-locked states in the regular as well as the quantum chaotic regime.
In this paper, the purity of quantum states is applied to probe chaotic dissipative dynamics. To achieve this goal, a comparative analysis of regular and chaotic regimes of nonlinear dissipative oscillator (NDO) are performed on the base of excitation number and the purity of oscillatory states. While the chaotic regime is identified in our semiclassical approach by means of strange attractors in Poincare section and with the Lyapunov exponent, the state in the quantum regime is treated via the Wigner function. Specifically, interesting quantum purity effects that accompany the chaotic dynamics are elucidated in this paper for NDO system driven by either: (i) a time-modulated field, or (ii) a sequence of pulses with Gaussian time-dependent envelopes.
We explore the coherent control of nonlinear absorption of intense laser fields in four-level atomic systems. For instance, in a four-level ladder system, a coupling field creates electromagnetically induced transparency (EIT) with Aulter-Townes doublet for the probe field while the control field is absent. A large absorption peak appears at resonance as the control field is switched on. We show how such a large absorption leads to optical switching. Further, this large absorption gets diminished and a transparency window appears due to the saturation effects as the strength of the probe field is increased. We further demonstrate that the threshold of the optical bistability can be modified by suitable choices of the coupling and the control fields. In a four-level Y-type configuration, the effect of the control field on saturable absorption (SA) and reverse saturable absorption (RSA) is highlighted in the context of nonlinear absorption of the probe field. We achieve RSA and SA in a simple atomic system just by applying a control field.
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubits transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing due to fluctuations in the transition frequencies, thereby improving the coherence time of the entangled state. The coupling coherence is further enhanced when applying multiple refocusing pulses, in agreement with our $1/f$ noise model. The results are applicable to any two-qubit system with transverse coupling, and they highlight the potential of decoupling techniques for improving two-qubit gate fidelities, an essential prerequisite for implementing fault-tolerant quantum computing.
We have found experimentally that the noise of ballistic electron transport in a superconductor/semiconductor/superconductor junction is enhanced relative to the value given by the general relation, S_V=2eIR^2coth(eV/2kT), for two voltage regions in which this expression reduces to its thermal and shot noise limits. The noise enhancement is explained by the presence of large charge quanta, with effective charge q*=(1+2Delta/eV)e, that generate a noise spectrum S_V=2q*IR^2, as predicted in Phys. Rev. Lett. 76, 3814 (1996). These charge quanta result from multiple Andreev reflections at each junction interface, which are also responsible for the subharmonic gap structure observed in the voltage dependence of the junctions conductance.