Disorder Line and Incommensurate Floating Phases in the Quantum Ising Model on an Anisotropic Triangular Lattice


Abstract in English

We present a Quantum Monte Carlo study of the Ising model in a transverse field on a square lattice with nearest-neighbor antiferromagnetic exchange interaction J and one diagonal second-neighbor interaction $J$, interpolating between square-lattice ($J=0$) and triangular-lattice ($J=J$) limits. At a transverse-field of $B_x=J$, the disorder-line first introduced by Stephenson, where the correlations go from Neel to incommensurate, meets the zero temperature axis at $Japprox 0.7 J$. Strong evidence is provided that the incommensurate phase at larger $J$, at finite temperatures, is a floating phase with power-law decaying correlations. We sketch a general phase-diagram for such a system and discuss how our work connects with the previous Quantum Monte Carlo work by Isakov and Moessner for the isotropic triangular lattice ($J=J$). For the isotropic triangular-lattice, we also obtain the entropy function and constant entropy contours using a mix of Quantum Monte Carlo, high-temperature series expansions and high-field expansion methods and show that phase transitions in the model in presence of a transverse field occur at very low entropy.

Download