A Technique for Deriving One-Shot Achievability Results in Network Information Theory


Abstract in English

This paper proposes a novel technique to prove a one-shot version of achievability results in network information theory. The technique is not based on covering and packing lemmas. In this technique, we use an stochastic encoder and decoder with a particular structure for coding that resembles both the ML and the joint-typicality coders. Although stochastic encoders and decoders do not usually enhance the capacity region, their use simplifies the analysis. The Jensen inequality lies at the heart of error analysis, which enables us to deal with the expectation of many terms coming from stochastic encoders and decoders at once. The technique is illustrated via several examples: point-to-point channel coding, Gelfand-Pinsker, Broadcast channel (Marton), Berger-Tung, Heegard-Berger/Kaspi, Multiple description coding and Joint source-channel coding over a MAC. Most of our one-shot results are new. The asymptotic forms of these expressions is the same as that of classical results. Our one-shot bounds in conjunction with multi-dimensional Berry-Essen CLT imply new results in the finite blocklength regime. In particular applying the one-shot result for the memoryless broadcast channel in the asymptotic case, we get the entire region of Martons inner bound without any need for time-sharing.

Download