No Arabic abstract
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to $Lambda$CDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on $delta_c$ parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to $Lambda$CDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to $Lambda$CDM model than its homogeneous counterparts.
We perform N-body simulations for models with a DE component. Besides of DE with constant negative state parameter w, we consider DE due to scalar fields, self-interacting through RP or SUGRA potentials. According to our post-linear analysis, at z=0, DM power spectra and halo mass functions do not depend on DE nature. This is welcome, as LCDM fits observations. Halo profiles, instead, are denser than LCDM. For example, the density at 15 kpc of a DE halo with M=10^13 exceeds LCDM by ~45%. Differences, therefore, are small but, however, DE does not ease the problem with cuspy DM profiles. We study also subhalos and find that, at $z=0$, the number of satellites coincides in all DE models. At higher z, DE models show increasing differences from LCDM and among themselves (i.e. in the mass function evolution); this is the obvious pattern to distinguish between different DE state equations.
The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $tau$ and recoil velocity $V_k$, and redshift. The fitting functions lead to accurate reconstruction of the the non-linear power transfer function of DDM to CDM in the framework of halo model. Using these results, we set constraints on the DDM parameter space by demanding that DDM does not induce larger suppression than the Lyman-$alpha$ constrained WDM models. We further generalize and constrain the DDM models to initial conditions with non-trivial mother fractions and show that the halo model predictions are still valid after considering a global decayed fraction. Finally, we point out that the DDM is unlikely to resolve the disagreement on cluster numbers between the Planck primary CMB prediction and the Sunyaev-Zeldovich (SZ) effect number count for $tau sim H_{0}^{-1}$.
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model fails to simultaneously resolve the Hubble tension and maintain a good fit to both cosmic microwave background (CMB) and large-scale structure (LSS) data. Here, we use redshift-space galaxy clustering data to sharpen constraints on the EDE model. We perform the first EDE analysis using the full-shape power spectrum likelihood from the Baryon Oscillation Spectroscopic Survey (BOSS), based on the effective field theory (EFT) of LSS. The inclusion of this likelihood in the EDE analysis yields a $25%$ tighter error bar on $H_0$ compared to primary CMB data alone, yielding $H_0 = 68.54^{+0.52}_{-0.95}$ km/s/Mpc ($68%$ CL). In addition, we constrain the maximum fractional energy density contribution of the EDE to $f_{rm EDE} < 0.072$ ($95%$ CL). We explicitly demonstrate that the EFT BOSS likelihood yields much stronger constraints on EDE than the standard BOSS likelihood. Including further information from photometric LSS surveys,the constraints narrow by an additional $20%$, yielding $H_0 = 68.73^{+0.42}_{-0.69}$ km/s/Mpc ($68%$ CL) and $f_{rm EDE}<0.053$ ($95%$ CL). These bounds are obtained without including local-universe $H_0$ data, which is in strong tension with the CMB and LSS, even in the EDE model. We also refute claims that MCMC analyses of EDE that omit SH0ES from the combined dataset yield misleading posteriors. Finally, we demonstrate that upcoming Euclid/DESI-like spectroscopic galaxy surveys can greatly improve the EDE constraints. We conclude that current data preclude the EDE model as a resolution of the Hubble tension, and that future LSS surveys can close the remaining parameter space of this model.
LCDM cosmological models with Early Dark Energy (EDE) have been proposed to resolve tensions between the Hubble constant H0 = 100h km/s/Mpc measured locally, giving h ~ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other early universe measurements plus LCDM, giving h ~ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10% of the cosmological energy density at the end of the radiation-dominated era at redshift z ~ 3500. Here we compare linear and nonlinear predictions of a Planck-normalized LCDM model including EDE giving h = 0.728 with those of standard Planck-normalized LCDM with h = 0.678. We find that nonlinear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1-2%. However, the differences dramatically increase at high redshifts. The EDE model predicts 50% more massive clusters at z = 1 and twice more galaxy-mass halos at z = 4. Even greater increases in abundances of galaxy-mass halos at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxy abundances and clustering will soon be tested by JWST observations. Positions of baryonic acoustic oscillations (BAOs) and correlation functions differ by about 2% between the models -- an effect that is not washed out by nonlinearities. Both standard LCDM and the EDE model studied here agree well with presently available acoustic-scale observations, but DESI and Euclid measurements will provide stringent new tests.
New measurements of the expansion rate of the Universe have plunged the standard model of cosmology into a severe crisis. In this letter, we propose a simple resolution to the problem that relies on a first order phase transition in a dark sector in the early Universe, before recombination. This will lead to a short phase of a New Early Dark Energy (NEDE) component and can explain the observations. We model the false vacuum decay of the NEDE scalar field as a sudden transition from a cosmological constant source to a decaying fluid with constant equation of state. The corresponding fluid perturbations are covariantly matched to the adiabatic fluctuations of a sub-dominant scalar field that triggers the phase transition. Fitting our model to measurements of the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO, and supernovae (SNe) yields a significant improvement of the best-fit compared with the standard cosmological model without NEDE. We find the mean value of the present Hubble parameter in the NEDE model to be $H_0=71.4 pm 1.0 ~textrm{km}, textrm{s}^{-1}, textrm{Mpc}^{-1}$ ($68, %$ C.L.).