Do you want to publish a course? Click here

Divergent Precursors of the Mott-Hubbard Transition at the Two-Particle Level

138   0   0.0 ( 0 )
 Added by Alessandro Toschi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifying the fingerprints of the Mott-Hubbard metal-insulator transition may be quite elusive in correlated metallic systems if the analysis is limited to the single particle level. However, our dynamical mean-field calculations demonstrate that the situation changes completely if the frequency dependence of the two-particle vertex functions is considered: The first non-perturbative precursors of the Mott physics are unambiguously identified well inside the metallic regime by the divergence of the local Bethe-Salpeter equation in the charge channel. At low temperatures this occurs in the region where incoherent high-energy features emerge in the spectral function, while at high temperatures it is traceable up to the atomic-limit.



rate research

Read More

102 - T. Schafer , F. Geles , D. Rost 2014
We have studied the impact of non-local electronic correlations at all length scales on the Mott-Hubbard metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining dynamical vertex approximation, lattice quantum Monte-Carlo and variational cluster approximation, we demonstrate that scattering at long-range fluctuations, i.e., Slater-like paramagnons, opens a spectral gap at weak-to-intermediate coupling -- irrespectively of the preformation of localized or short-ranged magnetic moments. This is the reason, why the two-dimensional Hubbard model is insulating at low enough temperatures for any (finite) interaction and no Mott-Hubbard transition is observed.
The combination of bandstructure theory in the local density approximation with dynamical mean field theory was recently successfully applied to V$_2$O$_3$ -- a material which undergoes the f amous Mott-Hubbard metal-insulator transition upon Cr doping. The aim of this sh ort paper is to emphasize two aspects of our recent results: (i) the filling of the Mott-Hubbard gap with increasing temperature, and (ii) the peculiarities of the Mott-Hubbard transition in this system which is not characterized by a diver gence of the effective mass for the $a_{1g}$-orbital.
We present a quantum critical behavior of the renormalized single-particle Wannier function, calculated in the Gutzwiller correlated state near the insulator-metal transition (IMT) for cubic lattices. The wave function size and its maximum, as well as the system energy scale with increasing lattice parameter $R$ as $R^{n}$. Such scaling is interpreted as the evidence of a dominant role of the Coulomb repulsion. Relation of the insulator-metal transition lattice-parameter value $R=R_{C}$ to the original {em Mott criterion} is obtained. The method is tested by comparing our results with the exact approach for the Hubbard chain.
81 - C. Walsh , P. Semon , D. Poulin 2020
Tools of quantum information theory offer a new perspective to characterize phases and phase transitions in interacting many-body quantum systems. The Hubbard model is the archetypal model of such systems and can explain rich phenomena of quantum matter with minimal assumptions. Recent measurements of entanglement-related properties of this model using ultracold atoms in optical lattices hint that entanglement could provide the key to understanding open questions of the doped Hubbard model, including the remarkable properties of the pseudogap phase. These experimental findings call for a theoretical framework and new predictions. Here we approach the doped Hubbard model in two dimensions from the perspective of quantum information theory. We study the local entropy and the total mutual information across the doping-driven Mott transition within plaquette cellular dynamical mean-field theory. We find that upon varying doping these two entanglement-related properties detect the Mott insulating phase, the strongly correlated pseudogap phase, and the metallic phase. Imprinted in the entanglement-related properties we also find the pseudogap to correlated metal first-order transition, its finite temperature critical endpoint, and its supercritical crossovers. Through this footprint we reveal an unexpected interplay of quantum and classical correlations. Our work shows that sharp variation in the entanglement-related properties and not broken symmetry phases characterizes the onset of the pseudogap phase at finite temperature.
158 - Georg Rohringer , Angelo Valli , 2012
Electronic correlated systems are often well described by dynamical mean field theory (DMFT). While DMFT studies have mainly focused hitherto on one-particle properties, valuable information is also enclosed into local two-particle Greens functions and vertices. They represent the main ingredient to compute momentum-dependent response functions at the DMFT level and to treat non-local spatial correlations at all length scales by means of diagrammatic extensions of DMFT. The aim of this paper is to present a DMFT analysis of the local reducible and irreducible two-particle vertex functions for the Hubbard model in the context of an unified diagrammatic formalism. An interpretation of the observed frequency structures is also given in terms of perturbation theory, of the comparison with the atomic limit, and of the mapping onto the attractive Hubbard model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا