By employing forces that depend on the internal electronic state (or spin) of an atomic ion, the Coulomb potential energy of a strongly coupled array of ions can be modified in a spin-dependent way to mimic effective quantum spin Hamiltonians. Both ferromagnetic and antiferromagnetic interactions can be implemented. We use simple models to explain how the effective spin interactions are engineered with trapped-ion crystals. We summarize the type of effective spin interactions that can be readily generated, and discuss an experimental implementation using single-plane ion crystals in a Penning trap.