No Arabic abstract
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
Using the ADM formalism in the minisuperspace, we obtain the commutative and noncommutative exact classical solutions and exact wave function to the Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic Bianchi type I cosmological model, coupled to a scalar field, cosmological term and barotropic perfect fluid. We introduce noncommutative scale factors, considering that all minisuperspace variables $rm q^i$ do not commute, so the symplectic structure was modified. In the classical regime, it is shown that the anisotropic parameter $rm beta_{pm nc}$ and the field $phi$, for some value in the $lambda_{eff}$ cosmological term and noncommutative $theta$ parameter, present a dynamical isotropization up to a critical cosmic time $t_{c}$; after this time, the effects of isotropization in the noncommutative minisuperspace seems to disappear. In the quantum regimen, the probability density presents a new structure that corresponds to the value of the noncommutativity parameter.
The important role of scalar field in cosmology was noticed by a number of authors. Due to the fact that the scalar field possesses zero spin, it was basically considered in isotropic cosmological models. If considered in an anisotropic model, the linear scalar field does not lead to isotropization of expansion process. One needs to introduce scalar field with nonlinear potential for the isotropization process to take place. In this paper the general form of scalar field potentials leading to the asymptotic isotropization in case of Bianchi type-I cosmological model, and inflationary regime in case of isotropic space-time is obtained. In doing so we solved both direct and inverse problem, where by direct problem we mean to find metric functions and scalar field for the given potential, whereas, the inverse problem means to find the potential and scalar field for the given metric function. The scalar field potentials leading to the inflation and isotropization were found both for harmonic and proper synchronic time.
We exactly solve the Wheeler-DeWitt equation for the closed homogeneous and isotropic quantum cosmology in the presence of a conformally coupled scalar field and in the context of the generalized uncertainty principle. This form of generalized uncertainty principle is motivated by the black hole physics and it predicts a minimal length uncertainty proportional to the Planck length. We construct wave packets in momentum minisuperspace which closely follow classical trajectories and strongly peak on them upon choosing appropriate initial conditions. Moreover, based on the DeWitt criterion, we obtain wave packets that exhibit singularity-free behavior.
Aspects of non-linear Schr{o}dinger-type (NLS) formulation of scalar (phantom) field cosmology on slow-roll, acceleration, WKB approximation and Big Rip singularity are presented. Slow-roll parameters for the curvature and barotropic density terms are introduced. We reexpress all slow-roll parameters, slow-roll conditions and acceleration condition in NLS form. WKB approximation in the NLS formulation is also discussed when simplifying to linear case. Most of the Schr{o}dinger potentials in NLS formulation are very slowly-varying, hence WKB approximation is valid in the ranges. In the NLS form of Big Rip singularity, two quantities are infinity in stead of three. We also found that approaching the Big Rip, $w_{rm eff}to -1 + {2}/{3q}$, $(q<0)$ which is the same as effective phantom equation of state in the flat case.
We study relations between hydrodynamical (H) and scalar field (SF) models of the dark energy in the early Universe. Main attention is paid to SF described by the canonical Lagrangian within the homogeneous isotropic spatially flat cosmology. We analyze requirements that guarantee the same cosmological history for the SF and H-models at least for solutions with specially chosen initial conditions and we present a differential equation for the SF potential that ensures such a restricted equivalence of the SF and H-models. Also, we derived a condition that guarantees an approximate equivalence when there is a small difference between energy momentum tensors of the models. The equivalent scalar field potentials for linear equations of state (EOS) are found in an explicit form, we also present an examples with more complicated EOS.