Do you want to publish a course? Click here

The Post-Merger Magnetized Evolution of White Dwarf Binaries: The Double-Degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

331   0   0.0 ( 0 )
 Added by Suoqing Ji
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly-rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly-rotating white dwarf merger surrounded by a hot corona and a thick, differentially-rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths $sim 2 times 10^8$ G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.



rate research

Read More

With the increasing number of observed magnetic white dwarfs (WDs), the role of magnetic field of the WD in both single and binary evolutions should draw more attentions. In this study, we investigate the WD/main-sequence star binary evolution with the Modules for Experiments in Stellar Astrophysics (MESA code), by considering WDs with non-, intermediate and high magnetic field strength. We mainly focus on how the strong magnetic field of the WD (in a polar-like system) affects the binary evolution towards type Ia supernovae (SNe Ia). The accreted matter goes along the magnetic field lines and falls down onto polar caps, and it can be confined by the strong magnetic field of the WD, so that the enhanced isotropic pole-mass transfer rate can let the WD grow in mass even with a low mass donor with the low Roche-lobe overflow mass transfer rate. The results under the magnetic confinement model show that both initial parameter space for SNe Ia and characteristics of the donors after SNe Ia are quite distinguishable from those found in pervious SNe Ia progenitor models. The predicted natures of the donors are compatible with the non-detection of a companion in several SN remnants and nearby SNe.
Type Ia supernovae are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally produce the correct mix of elements, but have to be finely tuned to proceed from sub-sonic deflagration to super-sonic detonation. Second, population models and observations give formation rates of near-Chandrasekhar white dwarfs that are far too small. Here, we suggest that type Ia supernovae instead result from mergers of roughly equal-mass carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. Numerical studies of such mergers have shown that the remnants consist of rapidly rotating cores that contain most of the mass and are hottest in the center, surrounded by dense, small disks. We argue that the disks accrete quickly, and that the resulting compressional heating likely leads to central carbon ignition. This ignition occurs at densities for which pure detonations lead to events similar to type Ia supernovae. With this merger scenario, we can understand the type Ia rates, and have plausible reasons for the observed range in luminosity and for the bias of more luminous supernovae towards younger populations. We speculate that explosions of white dwarfs slowly brought to the Chandrasekhar limit---which should also occur---are responsible for some of the atypical type Ia supernovae.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we show strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SN Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multi-dimensional simulations of ``tamped SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics, and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale-height of the disk, which depends sensitively on the binary mass ratio, and the total ${}^{56}$Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant, and show that a longer time delay between merger and explosion probably leads to larger ${}^{56}$Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical ``tamped SN Ia for explaining the class of ``super-Chandrasekhar SN Ia.
Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf -- a stripped core-helium burning star. The total mass of the system is 1.65+/-0.25 solar-masses, exceeding the Chandrasekhar limit (the maximum mass of a stable white dwarf). The system will merge due to gravitational wave emission in 70 million years, likely triggering a supernova Ia event. We use this detection to place constraints on the contribution of hot subdwarf-white dwarf binaries to supernova Ia progenitors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا