Do you want to publish a course? Click here

Global attractor for a nonlocal model for biological aggregation

158   0   0.0 ( 0 )
 Added by Ciprian Gal
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the long term behavior in terms of global attractors, as time goes to infinity, of solutions to a continuum model for biological aggregations in which individuals experience long-range social attraction and short range dispersal. We consider the aggregation equation with both degenerate and non-degenerate diffusion in a bounded domain subject to various boundary conditions. In the degenerate case, we prove the existence of the global attractor and derive some optimal regularity results. Furthermore, in the non-degenerate case we give a complete structural characterization of the global attractor, and also discuss the convergence of any bounded solutions to steady states. Finally, the existence of an exponential attractor is also demonstrated for sufficiently smooth kernels in the case of non-degenerate diffusion.



rate research

Read More

157 - Maurizio Grasselli 2011
We analyze a phase-field system where the energy balance equation is linearly coupled with a nonlinear and nonlocal ODE for the order parameter $chi$. The latter equation is characterized by a space convolution term which models particle interaction and a singular configuration potential that forces $chi$ to take values in $(-1,1)$. We prove that the corresponding dynamical system has a bounded absorbing set in a suitable phase space. Then we establish the existence of a finite-dimensional global attractor.
371 - Yonghui Zhou , Shuguan Ji 2020
This paper is concerned with the globally exponential stability of traveling wave fronts for a class of population dynamics model with quiescent stage and delay. First, we establish the comparison principle of solutions for the population dynamics model. Then, by the weighted energy method combining comparison principle, the globally exponential stability of traveling wave fronts of the population dynamics model under the quasi-monotonicity conditions is established.
In this paper we address the analytical investigation of a model for adhesive contact, which includes nonlocal sources of damage on the contact surface, such as the elongation. The resulting PDE system features various nonlinearities rendering the unilateral contact conditions, the physical constraints on the internal variables, as well as the integral contributions related to the nonlocal forces. For the associated initial-boundary value problem we obtain a global-in-time existence result by proving the existence of a local solution via a suitable approximation procedure and then by extending the local solution to a global one by a nonstandard prolongation argument.
165 - Cui Chen , Jiahui Hong , Kai Zhao 2021
The main purpose of this paper is to study the global propagation of singularities of viscosity solution to discounted Hamilton-Jacobi equation begin{equation}label{eq:discount 1}tag{HJ$_lambda$} lambda v(x)+H( x, Dv(x) )=0 , quad xin mathbb{R}^n. end{equation} We reduce the problem for equation eqref{eq:discount 1} into that for a time-dependent evolutionary Hamilton-Jacobi equation. We proved that the singularities of the viscosity solution of eqref{eq:discount 1} propagate along locally Lipschitz singular characteristics which can extend to $+infty$. We also obtained the homotopy equivalence between the singular set and the complement of associated the Aubry set with respect to the viscosity solution of equation eqref{eq:discount 1}.
375 - Gheorghe Craciun 2015
The global attractor conjecture says that toric dynamical systems (i.e., a class of polynomial dynamical systems on the positive orthant) have a globally attracting point within each positive linear invariant subspace -- or, equivalently, complex balanced mass-action systems have a globally attracting point within each positive stoichiometric compatibility class. A proof of this conjecture implies that a large class of nonlinear dynamical systems on the positive orthant have very simple and stable dynamics. The conjecture originates from the 1972 breakthrough work by Fritz Horn and Roy Jackson, and was formulated in its current form by Horn in 1974. We introduce toric differential inclusions, and we show that each positive solution of a toric differential inclusion is contained in an invariant region that prevents it from approaching the origin. We use this result to prove the global attractor conjecture. In particular, it follows that all detailed balanced mass action systems and all deficiency zero weakly reversible networks have the global attractor property.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا