Based on the non-crossing approximation, we calculate both the linear and nonlinear conductance within the two-lead two-channel single-impurity Anderson model where the conduction electron density of states vanishes in a power-law fashion $ propto |omega-mu_F|^r$ with $r=1$ near the Fermi energy, appropriate for an hexagonal system. For given gate voltage, we address the universal crossover from a two-channel Kondo phase, argued to occur in doped graphene, to an unscreened local moment phase. We extract universal scaling functions in conductance governing charge transfer through the two-channel pseudogap Kondo impurity and discuss our results in the context of a recent scanning tunneling spectroscopy experiment on Co-doped graphene.