Rectification of self-propelled particles by symmetric barriers


Abstract in English

The motion of self-propelled particles can be rectified by asymmetric or ratchet-like periodic patterns in space. Here we show that a non-zero average drift can already be induced in a periodic potential with symmetric barriers when the self-propulsion velocity is also symmetric and periodically modulated but phase-shifted against the potential. In the adiabatic limit of slow rotational diffusion we determine the mean drift analytically and discuss the influence of temperature. In the presence of asymmetric barriers modulating the self-propulsion can largely enhance the mean drift or even reverse it.

Download