Do you want to publish a course? Click here

Duality between equilibrium and growing networks

99   0   0.0 ( 0 )
 Added by Dmitri Krioukov
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an exception. Most network models can be classified as either equilibrium or growing. Here we show that under certain conditions there exists an equilibrium formulation for any growing network model, and vice versa. The equivalence between the equilibrium and nonequilibrium formulations is exact not only asymptotically, but even for any finite system size. The required conditions are satisfied in random geometric graphs in general and causal sets in particular, and to a large extent in some real networks.



rate research

Read More

A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
We study the extreme events taking place on complex networks. The transport on networks is modelled using random walks and we compute the probability for the occurance and recurrence of extreme events on the network. We show that the nodes with smaller number of links are more prone to extreme events than the ones with larger number of links. We obtain analytical estimates and verify them with numerical simulations. They are shown to be robust even when random walkers follow shortest path on the network. The results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle an extreme event.
As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks with Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.
Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power black-outs which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event-sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event-sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its generalized strength, a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.
527 - Zhongzhi Zhang , Shuyang Gao , 2010
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent $gamma$ of power-law degree distribution $P(k)sim k^{-gamma}$, which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent $gamma$ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number $N$, which is obviously independent of $gamma$ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where $gamma$ influences qualitatively the MFPT of trapping problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا